Methods for Quasi-Linear Viscoelastic Modeling of Soft Tissue: Application to Incremental Stress-Relaxation Experiments

[+] Author and Article Information
Joseph J. Sarver, Paul S. Robinson, Dawn M. Elliott

McKay Orthopaedics Research Laboratory, University of Pennsylvania, Philadelphia, PA

J Biomech Eng 125(5), 754-758 (Oct 09, 2003) (5 pages) doi:10.1115/1.1615247 History: Received December 02, 2002; Revised May 23, 2003; Online October 09, 2003
Copyright © 2003 by ASME
Your Session has timed out. Please sign back in to continue.


Fung, Y., 1993, “Bioviscoelastic Solids,” In: Biomechanics: Mechanical Properties of Living Tissues, pp. 242–320, Springer-Verlag, New York, NY.
Funk,  J. R., Hall,  G. W., Crandall,  J. R., and Pilkey,  W. D., 2000, “Linear and Quasi-Linear Viscoelastic Characterization of Ankle Ligaments,” J. Biomech. Eng., 122(1), pp. 15–22.
Lam,  T. C., Frank,  C. B., and Shrive,  N. G., 1993, “Changes in the Cyclic and Static Relaxations of the Rabbit Medial Collateral Ligament Complex During Maturation,” J. Biomech., 26, pp. 9–17.
Lynch,  H. A.Johannessen,  W.Wu,  J. P.Jawa,  A.Elliott,  D. M., “Effect of Fiber Orientation and Strain-Rate on the Nonlinear Uniaxial Tensile Material Properties of Tendon,” J. Biomech. Eng., 125(5), pp. 628–638.
Provenzano,  P., Lakes,  R., Keenan,  T., and Vanderby,  R., 2001, “Nonlinear Ligament Viscoelasticity,” Ann. Biomed. Eng., 29, pp. 908–914.
Robinson, P. S., Lin, T. W., Reynolds, P. R., Derwin, K. A., Iozzo, R. V., and Soslowsky, L. J., “Strain Rate Sensitive Mechanical Properties of Tendon Fascicles From Mice With Genetically Engineered Alterations in Collgen and Decorin,” J. Biomech. Eng., in review.
Woo,  S. L., Gomez,  M. A., and Akeson,  W. H., 1981, “The Time and History-Dependent Viscoelastic Properties of the Canine Medical Collateral Ligament,” J. Biomech. Eng., 103(4), pp. 293–298.
Wren,  T. A., Yerby,  S. A., Beaupre,  G. S., and Carter,  D. R., 2001, “Mechanical Properties of the Human Achilles Tendon,” Clin. Biomech. (Bristol, Avon), 16(3), pp. 245–51.
Akizuki,  S., Mow,  V. C., Muller,  F., Pita,  J. C., Howell,  D., and Manicourt,  D. H., 1986, “Tensile Properties of Human Knee Joint Cartilage: I. Influence of Ionic Conditions, Weight Bearing, and Fibrillation on the Tensile Modulus,” J. Orthop. Res., 4, pp. 379–392.
Elliott,  D. M., Guilak,  F., Vail,  T. P., Wang,  J. Y., and Setton,  L. A., 1999, “Tensile Properties of Articular Cartilage are Altered by Meniscectomy in a Canine Model of Osteoarthritis,” J. Orthop. Res., 17(4), pp. 503–508.
Elliott,  D. M., and Setton,  L. A., 2001, “Anisotropic and Inhomogeneous Tensile Behavior of the Human Anulus Fibrosus: Experimental Measurement and Material Model Predictions,” J. Biomech. Eng., 123, pp. 256–263.
Fortin,  M., Soulhat,  J., Shirazi-Adl,  A., Hunziker,  E. B., and Buschmann,  M. D., 2000, “Unconfined Compression of Articular Cartilage: Nonlinear Behavior and Comparison With a Fibril-Reinforced Biphasic Model,” J. Biomed. Eng., 122, pp. 189–195.
Schinagl,  R. M., Gurskis,  D., Chen,  A., and Sah,  R. L., 1997, “Depth-Dependent Confined Compression Modulus of Full-Thickness Bovine Articular Cartilage,” J. Orthop. Res., 15, pp. 499–506.
Elliott, D. M., Robinson, P. S., Gimbel, J. A., Sarver, J., Abboud, J. A., Iozzo, R. V., and Soslowsky, L. J., “Effect of Altered Matrix Proteins on Quasi-Linear Viscoelastic Properties in Transgenic Mouse Tail Tendons,” Ann. Biomed. Eng., in review.
Hansen,  K. A., Weiss,  J. A., and Barton,  J. K., 2002, “Recruitment of Tendon Crimp With Applied Tensile Strain,” J. Biomech. Eng., 124(1), pp. 72–77.
Weiss,  J. A., and Gardiner,  J. C., 2001, “Computational Modeling of Ligament Mechanics,” Crit. Rev. Biomed. Eng., 29(3), pp. 303–371.
Woo,  S. L. Y., Johnson,  G. A., and Smith,  B. A., 1993, “Mathematical Modeling of Ligaments and Tendons,” J. Biomech. Eng., 115, pp. 468–473.
Fung,  Y., 1967, “Elasticity of Soft Tissues in Simple Elongation,” Am. J. Physiol., 213(6), pp. 1532–1544.
Haut,  R. C., and Little,  R. W., 1972, “A Constitutive Equation for Collagen Fibers,” J. Biomech., 5, pp. 423–430.
Puso,  M. A., and Weiss,  J. A., 1998, “Finite-Element Implementation of Anisotropic Quasi-Linear Viscoelasticity Using a Discrete Spectrum Approximation,” J. Biomech. Eng., 120, pp. 62–70.
Johnson,  G. A., Tramaglini,  D. M., Levine,  R. E., Ohno,  K., Choi,  N.-Y., and Woo,  S. L.-Y., 1994, “Tensile and Viscoelastic Properties of Human Patellar Tendon,” J. Orthop. Res., 12, pp. 796–803.
Kwan,  M. K., Lin,  T. H., and Woo,  S. L., 1993, “On the Viscoelastic Properties of the Anteromedial Bundle of the Anterior Cruciate Ligament,” J. Biomech., 26(4–5), pp. 447–452.
Pradas,  M. M., and Calleja,  R. D., 1990, “Nonlinear Viscoelastic Behavior of the Flexor Tendon of the Human Hand,” J. Biomech., 23, pp. 773–781.
Thomopoulos, S., Williams, G. R., Gimbel, J. A., Favata, M., and Soslowsky, L. J., “Variation of Biomechanical, Structural, and Compositional Properties Along the Tendon to Bone Insertion Site,” J. Orthop. Res., 32767 .
Bonifasi-Lista,  C., Lake,  S., Ellis,  B., Rosenberg,  T., and Weiss,  J. A., 2002, “Strain- and Rate-Dependent Viscoleastic Properties of Human MCL in Tension,” Transactions of the Orthopaedic Research Society, 27, p. 609.
Thornton,  G. M., Oliynyk,  A., Frank,  C. B., and Shrive,  N. G., 1997, “Ligament Creep Cannot Be Predicted From Stress Relaxation at Low Stress: A Biomechanical Study of the Rabbit Medial Collateral Ligament,” J. Orthop. Res., 15(5), pp. 652–656.
Dortmans,  L. J., Sauren,  A. A., and Rousseau,  E. P., 1984, “Parameter Estimation Using the Quasi-Linear Viscoelastic Model Proposed by Fung,” J. Biomech. Eng., 106(3), pp. 198–203.
Myers,  B., McElhaney,  J., Nightingale,  R., and Doherty,  B., 1991, “Experimental Limitations of Quasi-Linear Theory, and a Method for Reducing These Effects,” ASME Advances in Bioengineering, BED-20, pp. 139–142.
Nigul,  I., and Nigul,  U., 1987, “On Algorithms of Evaluation of Fung’s Relaxation Function Parameters,” J. Biomech., 20(4), pp. 343–352.
Sauren,  A. A., and Rousseau,  E. P., 1983, “A Concise Sensitivity Analysis of the Quasi-Linear Viscoelastic Model Proposed by Fung,” J. Biomech. Eng., 105(1), pp. 92–95.
Hewitt,  J., Guilak,  F., Glisson,  R., and Vail,  T. P., 2001, “Regional Material Properties of the Human Hip-Joint Capsule Ligaments,” J. Orthop. Res., 19(3), pp. 359–64.
Elliott,  D. M., Narmoneva,  D. A., and Setton,  L. A., 2002, “Direct Measurement of the Poisson’s Ratio of Human Patella Cartilage in Tension,” J. Biomech. Eng., 124(2), pp. 223–228.
Roth,  V., and Mow,  V. C., 1980, “Intrinsic Tensile Behavior of the Matrix of Bovine Articular Cartilage and Its Variation With Age,” J. Bone Jt. Surg., 62A(7), pp. 1102–1117.
Woo,  S. L. Y., Akeson,  W. H., and Jemmott,  G. F., 1976, “Measurements of Nonhomogeneous Directional Mechanical Properties of Articular Cartilage in Tension,” J. Biomech., 9, pp. 785–791.
Fithian,  D. C., Zhu,  W. B., Ratcliffe,  A., Kelly,  M. A., Mow,  B. C., and Malinin,  T. I., 1989, “Exponential Law Representation of Tensile Properties of Human Mensicus,” Proc. Inst. Mech. Eng., pp. 85–90.
Beck, J. V., and Arnold, K. J., 1977, Parameter Estimation in Engineering and Science, John Wiley & Sons, New York, NY.
Scott,  E. P., and Saad,  Z., 1993, “Estimation of Kinetic Parameters Associated With the Curing of Thermoset Resins; Theoretical Investigation,” Polym. Eng. Sci., 33(18), pp. 1157–1164.
Pioletti,  D. P., and Rakotomanana,  L. R., 2000, “On the Independence of Time and Strain Effects in the Stress Relaxation of Ligaments and Tendons,” J. Biomech., 33, pp. 1729–1732.
Provenzano,  P., Lakes,  R., DT,  C., and Vanderby,  R., 2002, “Application of Nonlinear Viscoelastic Models to Describe Ligament Behavior,” Biomechan Model Mechanobiol, 1, pp. 45–57.


Grahic Jump Location
Schematic of uniaxial strain (ε) and stress (σ) versus time for i incremental steps. For each increment: the peak and final stresses are given by σP and σF, respectively, the ramp and relaxation time by tP and tF, respectively, and the strain as ε.
Grahic Jump Location
Normalized stress versus time utilizing the G- (A) and Qn- (B) methods for four strain increments
Grahic Jump Location
Stress versus time for model fit (thick line) and measured data (open circles) at four different strains for both the G-method (A) and Qn-method (B)




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In