0
TECHNICAL PAPERS: Fluids/Heat/Transport

Numerical Simulation of Wall Shear Stress Conditions and Platelet Localization in Realistic End-to-Side Arterial Anastomoses

[+] Author and Article Information
P. Worth Longest, Clement Kleinstreuer

Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC

J Biomech Eng 125(5), 671-681 (Oct 09, 2003) (11 pages) doi:10.1115/1.1613298 History: Received December 03, 2002; Revised February 07, 2003; Online October 09, 2003
Copyright © 2003 by ASME
Your Session has timed out. Please sign back in to continue.

References

Sottiurai,  V. S., Yao,  J. S. T., Flinn,  W. R., and Batson,  R. C., 1983, “Intimal Hyperplasia and Neointima: An Ultrastructural Analysis of Thrombosed Grafts in Humans,” Surgery , 93(6), pp. 809–817.
Bassiouny,  H. S., White,  S., Glagov,  S., Choi,  E., Giddens,  D. P., and Zarins,  C. K., 1992, “Anastomotic Intimal Hyperplasia: Mechanical Injury or Flow Induced,” J. Vasc. Surg., 15, pp. 708–717.
Keynton,  R. S., Rittgers,  S. E., and Shu,  M. C. S., 1991, “The Effect of Angle and Flow Rate Upon Hemodynamics in Distal Vascular Graft Anastomoses: An In Vitro Model Study,” ASME J. Biomech. Eng., 113, pp. 458–463.
Kleinstreuer,  C., Hyun,  S., Buchanan,  J. R., Longest,  P. W., Archie,  J. P., and Truskey,  G. A., 2001, “Hemodynamic Parameters and Early Intimal Thickening in Branching Blood Vessels,” Crit. Rev. Biomed. Eng., 29(1), pp. 1–64.
Ojha,  M., Ethier,  C. R., Johnston,  K. W., and Cobbold,  R. S. C., 1990, “Steady and Pulsatile Flow Fields in an End-to-Side Arterial Anastomosis Model,” J. Vasc. Surg., 12, pp. 747–753.
Ojha,  M., Cobbold,  R. S. C., and Johnston,  K. W., 1994, “Influence of Angle on Wall Shear Stress Distribution for an End-to-Side Anastomosis,” J. Vasc. Surg., 19, pp. 1067–1073.
Sottiurai,  V. S., 1999, “Distal Anastomotic Intimal Hyperplasia: Histocytomorphology, Pathophysiology, Etiology, and Prevention,” International Journal of Angiology,8, pp. 1–10.
Leuprecht,  A., Perktold,  K., Prosi,  M., Berk,  T., Trubel,  W., and Schima,  H., 2002, “Numerical Study of Hemodynamics and Wall Mechanics in Distal End-to-Side Anastomoses of Bypass Grafts,” J. Biomech., 35, pp. 225–236.
Trubel,  W., Schima,  H., Moritz,  A., Raderer,  F., Windisch,  A., Ullrich,  R., Windberger,  U., Losert,  U., and Polterauer,  P., 1995, “Compliance Mismatch and Formation of Distal Anastomotic Intimal Hyperplasia in Externally Stiffened and Lumen-Adapted Venous Grafts,” Eur. J. Vasc. Endovasc Surg., 10, pp. 1–9.
White,  S. S., Zarins,  C. K., Giddens,  D. P., Bassiouny,  H., Loth,  F., Jones,  S. A., and Glagov,  S., 1993, “Hemodynamic Patterns in Two Models of End-to-Side Vascular Graft Anastomoses: Effects of Pulsatility, Flow Division, Reynolds Number, and Hood Length,” ASME J. Biomech. Eng., 115, pp. 104–111.
Sottiurai,  V. S., Yao,  J. S. T., Batson,  R. C., Sue,  S. L., Jones,  R., and Nakamura,  Y. A., 1989, “Distal Anastomotic Intimal Hyperplasia: Histopathologic Character and Biogenesis,” Ann. Vasc. Surg., 3(1), pp. 26–33.
Keynton,  R. S., Evancho,  M. M., Sims,  R. L., Rodway,  N. V., Gobin,  A., and Rittgers,  S. E., 2001, “Intimal Hyperplasia and Wall Shear in Arterial Bypass Graft Distal Anatomoses: An In Vivo Model Study,” J. Biomech. Eng., 123, pp. 464–473.
Li,  X., and Rittgers,  S. E., 2001, “Hemodynamic Factors at the Distal End-to-Side Anastomosis of a Bypass Graft With Different POS:DOS Flow Ratios,” ASME J. Biomech. Eng., 123, pp. 270–276.
Loth,  F., Jones,  S., Zarins,  C. K., Giddens,  D. P., Nassar,  R. F., Glagov,  S., and Bassiouny,  H. S., 2002, “Relative Contribution of Wall Shear Stress and Injury in Experimental Intimal Thickening at PTFE End-to-Side Arterial Anastomoses,” J. Biomech. Eng., 124, pp. 44–51.
Longest,  P. W., Kleinstreuer,  C., Truskey,  G. A., and Buchanan,  J. R., 2003, “Relation Between Near-Wall Residence Times of Monocytes and Early Lesion Growth in the Rabbit Aorto-Celiac Junction,” Ann. Biomed. Eng., 31, pp. 53–64.
Harrison,  D. G., Sayegh,  H., Ohara,  Y., Inoue,  N., and Venema,  R. C., 1996, “Regulation of Expression of the Endothelial Cell Nitric Oxide Synthase,” Clin. Exp. Pharmacol. Physiol., 23, pp. 251–255.
Mondy,  J. S., Lindner,  V., Miyashiro,  J. K., Berk,  B. C., Dean,  R. H., and Geary,  R. L., 1997, “Platelet-Derived Growth Factor and Receptor Expression in Response to Altered Blood Flow In Vivo,” Circ. Res., 81, pp. 320–327.
Pearson,  J. D., 1994, “Endothelial Cell Function and Thrombosis,” Baillieres Clin. Haematol., 7, pp. 441–452.
Longest, P. W., 2002, “Computational Analysis of Transient Particle Hemodynamics With Applications to Femoral Bypass Graft Designs,” Ph.D. Dissertation, Mechanical and Aerospace Engineering Department, North Carolina State University, Raleigh, NC.
Longest,  P. W., and Kleinstreuer,  C., 2003, “Comparison of Blood Particle Deposition Models for Non-Parallel Flow Domains,” J. Biomech., 36, pp. 421–430.
Buchanan,  J. R., and Kleinstreuer,  C., 1998, “Simulation of Particle Hemodynamics in a Partially Occluded Artery Segment With Implications to the Initiation of Microemboli and Secondary Stenoses,” J. Biomech. Eng., 120, pp. 446–454.
Cokelet, G. R., 1987, The Rheology and Tube Flow of Blood. In: Handbook of Bioengineering, ed. R. Skalak and S. Chien, S., McGraw-Hill, New York, NY.
Buchanan, J. R., 1996, “Computational Analysis of Particle Hemodynamics in Stenosed Artery Segments,” M.S. Thesis, Mechanical and Aerospace Engineering Department, North Carolina State University, Raleigh, NC.
Bertschinger,  K., Cassina,  P. C., Debatin,  J. F., and Ruehm,  S. G., 2001, “Surveillance of Peripheral Arterial Bypass Grafts With Three-Dimensional MR Angiography,” AJR, Am. J. Roentgenol., 176, pp. 215–220.
Okadome,  K., Onohara,  T., Yamamura,  S., and Sugimachi,  K., 1991, “Intraoperative Flow Waveform Analysis Aids in Preventing Early Graft Failure Following Reconstruction of Arteries of the Legs,” Ann. Vasc. Surg., 5, pp. 413–418.
Buchanan, J. R., 2000, “Computational Particle Hemodynamics in the Rabbit Abdominal Aorta,” Ph.D. Dissertation, Mechanical and Aerospace Engineering Department, North Carolina State University, Raleigh, NC.
Longest, P. W., Kleinstreuer, C., and Buchanan, J. R., 2003, “Efficient Computation of Micron-Particle Dynamics Including Wall Effects,” Comput. Fluids (in press).
Loth,  E., 2000, “Numerical Approaches for Motion of Dispersed Particles, Droplets and Bubbles,” Progress in Energy and Combustion Science,26, pp. 161–223.
Kim, S., and Karrila, S. J., 1991, Microhydrodynamics: Principles and Selected Applications, Butterworth-Heinemann, Boston.
Cherukat,  P., and McLaughlin,  J. B., 1994, “The Inertial Lift on a Rigid Sphere in a Linear Shear Flow Field Near a Flat Wall,” J. Fluid Mech., 263, pp. 1–18.
Aarts,  P. A. M. M., Steendijk,  P., Sixma,  J. J., and Heethaar,  R. M., 1986, “Fluid Shear as a Possible Mechanism for Platelet Diffusivity in Flowing Blood,” J. Biomech., 19(10), pp. 799–805.
Zydney,  A. L., and Colton,  C. K., 1988, “Augmented Solute Transport in the Shear Flow of a Concentrated Suspension,” Physicochemical Hydrodynamics,10, pp. 77–96.
Eckstein,  E. C., and Belgacem,  F., 1991, “Model of Platelet Transport in Flowing Blood With Drift and Diffusion Terms,” Biophys. J., 60, pp. 53–69.
Aarts,  P. A., van den Broek,  S. A., Prins,  G. W., Kuiken,  G. D., Sixma,  J. J., and Heethaar,  R. M., 1988, “Blood Platelets are Concentrated Near the Wall and Red Blood Cells, in the Center of Flowing Blood,” Arteriosclerosis,8(6), pp. 819–824.
Karino,  T., and Goldsmith,  H. J., 1977, “Flow Behavior of Blood Cells and Rigid Spheres in an Annular Vortex,” Philos. Trans. R. Soc. London, 279, pp. 413–445.
Affeld,  K., Reininger,  A. J., Gadischke,  J., Grunert,  K., Schmidt,  S., and Thiele,  F., 1995, “Fluid Mechanics of the Stagnation Point Flow Chamber and its Platelet Deposition,” Artif. Organs, 19(7), pp. 597–602.
Hinds,  M. T., Park,  Y. J., Jones,  S. A., Giddens,  D. P., and Alevriadou,  B. R., 2001, “Local Hemodynamics Affect Monocytic Cell Adhesion to a Three-Dimensional Flow Model Coated With E-Selectin,” J. Biomech., 34, pp. 95–103.
Goldsmith,  H. L., Frojmovic,  M. M., Braovac,  S., McIntosh,  F., and Wong,  T., 1994, “Adenosine Diphosphate-Induced Aggregation of Human Platelets in Flow Through Tubes. III. Shear and Extrinsic Fibrinogen-Dependent Effects,” Thromb. Haemostasis, 71(1), pp. 78–90.
Hellums,  J. D., 1994, “1993 Whitaker Lecture: Biorheology In Thrombosis Research,” Ann. Biomed. Eng., 22(5), pp. 445–455.
Holme,  P. A., Orvim,  U., Hamers,  M. J., Solum,  N. O., and Brosstad,  F. R., 1997, “Shear-Induced Platelet Activation and Platelet Microparticle Formation at Blood Flow Conditions as in Arteries With a Severe Stenosis,” Arterioscler., Thromb., Vasc. Biol., 17(4), pp. 646–653.
Boreda,  R., Fatemi,  R. S., and Rittgers,  S. E., 1995, “Potential for Platelet Stimulation in Critically Stenosed Carotid and Coronary Arteries,” J. Vasc. Investigation, 1(1), pp. 26–37.
Grabowski,  E. F., Reininger,  A. J., Petteruti,  P. G., Tsukurov,  O., and Orkin,  R. W., 2001, “Shear Stress Decreases Endothelial Cell Tissue Factor Activity by Augmenting Secretion of Tissue Factor Pathway Inhibitor,” Arterioscler., Thromb., Vasc. Biol., 21, pp. 157–162.
Grabowski,  E. F., Jaffe,  E. A., and Weksler,  B. B., 1985, “Prostacyclin Production by Cultured Endothelial Cell Monolayers Exposed to Step Increase in Shear Stress,” J. Lab. Clin. Med., 105, pp. 36–43.
Westmuckett,  A. D., Lupu,  C., Roquefeuil,  S., Krausz,  T., Kakkar,  V. V., and Lupu,  F., 2000, “Fluid Flow Induces Up-Regulation of Synthesis and Release of Tissue Factor Pathway Inhibitor In Vitro,” Arterioscler., Thromb., Vasc. Biol., 20, pp. 2474–2482.
Watase,  M., Kambayashi,  J., Itoh,  T., Tsuji,  Y., Kawasaki,  T., Shiba,  E., Sakon,  M., Mori,  T., Yashika,  K., and Hashimoto,  P. H., 1992, “Ultrastructural Analysis of Pseudo-Intimal Hyperplasia of Polytetrafluoroethylene Prostheses Implanted Into the Venous and Arterial Systems,” Eur. J. Vasc. Surg., 6, pp. 371–380.
Wootton,  D. M., and Ku,  D. N., 1999, “Fluid Mechanics of Vascular Systems, Diseases, and Thrombosis,” Ann. Biomed. Eng., 10, pp. 299–329.
Tambasco,  M., and Steinman,  D. A., 2002, “On Assessing the Quality of Particle Tracking Through Computational Fluid Dynamic Models,” J. Biomech. Eng., 124, pp. 166–175.
Longest,  P. W., and Kleinstreuer,  C., 2000, “Computational Hemodynamics Analysis and Comparison Study of Arterio-Venous Grafts,” J. Med. Eng. Technol., 24(3), pp. 102–110.
Ethier,  C. R., Steinman,  D. A., Zhang,  X., Karpik,  S. R., and Ojha,  M., 1998, “Flow Waveform Effects on End-to-Side Anastomotic Flow Patterns,” J. Biomech., 31, pp. 609–617.
Kleinstreuer,  C., Lei,  M., and Archie,  J. P., 1996, “Flow Input Waveform Effects on the Temporal and Spatial Wall Shear Stress Gradients in a Femoral Graft-Artery Connector,” ASME J. Biomech. Eng., 118, pp. 506–510.
Loth,  F., Jones,  S., Giddens,  D., Bassiouny,  H., Glagov,  S., and Zarins,  C., 1997, “Measurements of Velocity and Wall Shear Stress Inside a PTFE Vascular Graft Model Under Steady Flow Conditions,” ASME J. Biomech. Eng., 119, pp. 187–194.
Lei,  M., Kleinstreuer,  C., and Archie,  J. P., 1997, “Hemodynamic Simulations and Computer-Aided Designs of Graft-Artery Junctions,” ASME J. Biomech. Eng., 119, pp. 343–348.
Moore,  J. A., Steinman,  D. A., Prakash,  S., Johnston,  K. W., and Ethier,  C. R., 1999, “A Numerical Study of Blood Flow Patterns in Anatomically Realistic and Simplified End-to-Side Anastomoses,” ASME J. Biomech. Eng., 121, pp. 265–272.
Sharefkin,  J. B., Diamond,  S. L., Eskin,  S. G., McIntire,  L. V., and Diefenbach,  C. W., 1991, “Fluid Flow Decreases Preproendothelin mRNA Levels and Suppresses Endothelin-1 Peptide Release in Cultured Human Endothelial Cells,” J. Vasc. Surg., 14, pp. 1–9.
Ziats,  N. P., and Robertson,  A. L., 1981, “Effects of Peripheral Blood Monocytes on Human Vascular Cell Proliferation,” Atherosclerosis, 38, pp. 401–410.
Ross,  R., 1993, “The Pathogenesis of Atherosclerosis: A Perspective for the 1990s,” Nature (London), 362, pp. 801–809.
Liu,  S. Q., 1999, “Biomechanical Basis of Vascular Tissue Engineering,” Crit. Rev. Biomed. Eng., 27(1&2), pp. 75–148.
Savage,  B., Saldivar,  E., and Ruggeri,  Z. M., 1996, “Initiation of Platelet Adhesion by Arrest Onto Fibrinogen or Translocation on von Willebrand Factor,” Cell, 84(2), pp. 289–297.
Leu,  H. J., Feigl,  W., Susani,  M., and Odermatt,  B., 1988, “Differentiation of Mononuclear Cells Into Macrophages, Fibroblasts, and Endothelial Cells in Thrombus Organization,” Exp. Cell Biol., 56, pp. 201–210.
Sloope,  G. D., Fallon,  K. B., and Zieske,  A. W., 2002, “Atherosclerotic Plaque-Like Lesions in Synthetic Arteriovenous Grafts: Implications for Atherogenesis,” Atherosclerosis, 160, pp. 133–139.

Figures

Grahic Jump Location
Geometric surface models of commonly implemented anastomotic configurations. Case A is characterized by a proximally occluded artery, whereas Cases B and C allow for 20% proximal outflow.
Grahic Jump Location
Standard Type I input pulse for a 6 mm graft consistent with typical post-surgical observations of the human femoropopliteal bypass 25 and canine anastomotic models 14
Grahic Jump Location
Validation of the luminal-particle-tracking algorithm in an annular expansion (d1=151 μm;d2=504 μm) under sinusoidal flow conditions. (a) Experimental observation of a red blood cell trajectory 35 released at position A. The left panel illustrates particle motion during the vortex expansion phase (position A to B) while the right panel displays the trajectory during vortex retraction (position B through exit). (b) Corresponding simulation of an idealized spherical blood particle trajectory viewed in two stages (from Ref. 15).
Grahic Jump Location
Outline of the NWRT model for platelets including platelet stimulation history (PSH) and WSS-based surface reactivity (SR) conditions
Grahic Jump Location
Surface contours of the WSS-based hemodynamic parameters for Case A (high graft-angle and no proximal outflow)
Grahic Jump Location
Surface contours of the WSS-based hemodynamic parameters for Case B (high graft-angle and 20% proximal outflow)
Grahic Jump Location
Surface contours of the WSS-based hemodynamic parameters for Case C (low graft-angle and 20% proximal outflow)
Grahic Jump Location
NWRT contours based on platelet trajectories with and without PSH and SR Case A (b) factors. Including the PSH and SR factors, a potential shift in significant IH occurrence is observed from the floor of Case A (b) to the graft hood of Case C (f). The particle hemodynamic potential for IH occurrence appears significant at the heel and along the lateral wall for all cases considered.
Grahic Jump Location
Convergence of the NWRT parameter based on platelet trajectories with and without dispersion. A mean relative error of εmean≤10% has been assumed to represent a sufficiently converged solution, cf. Eq. (9).

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In