Inhomogeneous Cartilage Properties Enhance Superficial Interstitial Fluid Support and Frictional Properties, But Do Not Provide a Homogeneous State of Stress

[+] Author and Article Information
Ramaswamy Krishnan, Seonghun Park, Gerard A. Ateshian

Department of Mechanical Engineering, Columbia University, New York, NY 10027

Felix Eckstein

Institute of Anatomy, Ludwig Maximilians Universität, Munich, Germany

J Biomech Eng 125(5), 569-577 (Oct 09, 2003) (9 pages) doi:10.1115/1.1610018 History: Received October 23, 2002; Revised April 19, 2003; Online October 09, 2003
Copyright © 2003 by ASME
Your Session has timed out. Please sign back in to continue.


Meachim, G., and Stockwell, R. A., 1979, “The Matrix,” In: Adult Articular Cartilage, M. A. R. Freeman (ed.), 2nd edition, Pitman Medical, Kent, England, pp. 1–67.
Mow, V. C., and Ratcliffe, A., 1997, “Structure and Function of Articular Cartilage and Meniscus,” In: Basic Orthopaedic Biomechanics, V. C. Mow and W. C. Hayes (eds.), 2nd edition, Lippincott-Raven, Philadelphia, PA, pp. 113–177.
Maroudas, A., 1979, “Physicochemical Properties of Articular Cartilage,” In: Adult Articular Cartilage, M. A. R. Freeman (ed.), 2nd edition, Pitman Medical, Kent, England, pp. 215–290.
Kempson, G. E., 1979, “Mechanical Properties of Articular Cartilage,” In: Adult Articular Cartilage, M. A. R. Freeman (ed.), 2nd edition, Pitman Medical, Kent, England, pp. 333–414.
Akizuki,  S., Mow,  V. C., Muller,  F., Pita,  J. C., Howell,  D. S., and Manicourt,  D. H., 1986, “Tensile Properties of Human Knee Joint Cartilage: I. Influence of Ionic Conditions, Weight Bearing, and Fibrillation on the Tensile Modulus,” J. Orthop. Res., 4, pp. 379–392.
Guilak,  F., Ratcliffe,  A., and Mow,  V. C., 1995, “Chondrocyte Deformation and Local Tissue Strain in Articular Cartilage: A Confocal Microscopy Study,” J. Orthop. Res., 13, pp. 410–421.
Schinagl,  R. M., Gurskis,  D., Chen,  A. C., and Sah,  R. L., 1997, “Depth-Dependent Confined Compression Modulus of Full-Thickness Bovine Articular Cartilage,” J. Orthop. Res., 15, pp. 499–506.
Chen,  A. C., Bae,  W. C., Schinagl,  R. M., Sah,  R. L., and 2001, “Depth- and Strain-Dependent Mechanical and Electromechanical Properties of Full-Thickness Bovine Articular Cartilage in Confined Compression,” J. Biomech., 34, pp. 1–12.
Wang,  C. C-B., Chahine,  N. O., Hung,  C. T., and Ateshian,  G. A., 2003, “Optical Determination of Anisotropic Properties of Bovine Articular Cartilage in Compression,” J. Biomech., 36, pp. 339–353.
Brandt, K. D., 1990, Cartilage Changes in Osteoarthritis, Indiana University School of Medicine Press, Indianapolis, IN.
Humphrey,  J. D., and Na,  S., 2002, “Elastodynamics and Arterial Wall Stress,” Ann. Biomed. Eng., 30, pp. 509–523.
McCutchen,  C. W., 1962, “The Frictional Properties of Animal Joints,” Wear, 5, pp. 1–17.
Malcom, L. L., 1976, “An Experimental Investigation of the Frictional and Deformational Responses of Articular Cartilage Interfaces to Static and Dynamic Loading,” Ph.D. Thesis, University of California, San Diego.
Forster,  H., and Fisher,  J., 1996, “The Influence of Loading Time and Lubricant on the Friction of Articular Cartilage,” Proc. Inst. Mech. Eng., Part H: J. Eng. Med., 210(Part H), pp. 109–119.
Ateshian,  G. A., 1997, “A Theoretical Formulation for Boundary Friction in Articular Cartilage,” ASME J. Biomech. Eng., 119, pp. 81–86.
Ateshian,  G. A., Wang,  H., and Lai,  W. M., 1998, “The Role of Interstitial Fluid Pressurization and Surface Porosities on the Boundary Friction of Articular Cartilage,” ASME J. Tribol., 120, pp. 241–251.
Ateshian,  G. A., Lai,  W. M., Zhu,  W. B., and Mow,  V. C., 1994, “An Asymptotic Solution for Two Contacting Biphasic Cartilage Layer,” J. Biomech., 27, pp. 1347–1360.
Macirowski,  T., Tepic,  S., and Mann,  R. W., 1994, “Cartilage Stresses in the Human Hip Joint,” J. Biomech. Eng., 116, pp. 11–18.
Ateshian,  G. A., and Wang,  H., 1995, “A Theoretical Solution for the Rolling Contact of Frictionless Cylindrical Biphasic Articular Cartilage Layers,” J. Biomech., 28, pp. 1341–1355.
Kelkar,  R., and Ateshian,  G. A., 1999, “Contact Creep of Biphasic Cartilage Layers: Identical Layers,” ASME J. Appl. Mech., 66, pp. 137–145.
Mow,  V. C., Kuei,  S. C., Lai,  W. M., and Armstrong,  C. G., 1980, “Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiments,” J. Biomech. Eng., 102, pp. 73–84.
Mizrahi,  J., Maroudas,  A., Lanir,  Y., Ziv,  I., and Webber,  T. J., 1986, “The ‘Instantaneous’ Deformation of Cartilage: Effects of Collagen Fiber Orientation and Osmotic Stress,” Biorheology, 23, pp. 311–330.
Cohen,  B., Lai,  W. M., and Mow,  V. C., 1998, “A Transversely Isotropic Biphasic Model for Unconfined Compression of Growth Plate and Chondroepiphysis,” J. Biomech. Eng., 120, pp. 491–496.
Soulhat,  J., Buschmann,  M. D., and Shirazi-Adl,  A., 1999, “A Fibril-Network-Reinforced Biphasic Model of Cartilage in Unconfined Compression,” J. Biomech. Eng., 121, pp. 340–347.
Soltz,  M. A., and Ateshian,  G. A., 2000, “A Conewise Linear Elasticity Mixture Model for the Analysis of Tension-Compression Nonlinearity in Articular Cartilage,” J. Biomech. Eng., 122, pp. 576–586.
Huang,  C. Y., Mow,  V. C., and Ateshian,  G. A., 2001, “The Role of Flow-Independent Viscoelasticity in the Biphasic Tensile and Compressive Responses of Articular Cartilage,” J. Biomech. Eng., 123, pp. 410–417.
Li,  L. P., Buschmann,  M. D., and Shirazi-Adl,  A., 2000, “A Fibril Reinforced Nonhomogeneous Poroelastic Model for Articular Cartilage: Inhomogeneous Response in Unconfined Compression,” J. Biomech., 33, pp. 1533–1541.
Heegaard,  J., Leyvraz,  P. F., Curnier,  A., Rakotomanana,  L., and Huiskes,  R., 1995, “The Biomechanics of the Human Patella During Passive Knee Flexion,” J. Biomech., 28, pp. 1265–1279.
Bendjaballah,  M. Z., Shirazi-Adl,  A., and Zukor,  D. J., 1997, “Finite Element Analysis of Human Knee Joint in Varus-Valgus,” Clin. Biomech. (Los Angel. Calif.), 12, pp. 139–148.
Dunbar,  W. L., Un,  K., Donzelli,  P. S., and Spilker,  R. L., 2001, “An Evaluation of Three-Dimensional Diarthrodial Joint Contact Using Penetration Data and the Finite Element Method,” J. Biomech. Eng., 123, pp. 333–340.
Li,  G., Lopez,  O., and Rubash,  H., 2001, “Variability of a Three-Dimensional Finite Element Model Constructed Using Magnetic Resonance Images of a Knee for Joint Contact Stress Analysis,” J. Biomech. Eng., 123, pp. 341–346.
Donahue,  T. L., Hull,  M. L., Rashid,  M. M., and Jacobs,  C. R., 2002, “A Finite Element Model of the Human Knee Joint for the Study of Tibio-Femoral Contact,” J. Biomech. Eng., 124, pp. 273–280.
Wayne,  J. S., Woo,  S. L., and Kwan,  M. K., 1991, “Application of the U-P Finite Element Method to the Study of Articular Cartilage,” J. Biomech. Eng., 113, pp. 397–403.
Almeida,  E. S., and Spilker,  R. L., 1997, “Mixed and Penalty Finite Element Models for the Nonlinear Behavior of Biphasic Soft Tissues in Finite Deformation: Part I - Alternate Formulations,” Comput. Methods Biomech. Biomed. Engin., 1, pp. 25–46.
Bathe, K-J., 1996, Finite Element Procedures, Prentice-Hall, Englewood Cliffs, N.J.
Herberhold,  C., Faber,  S., Stammberger,  T., Steinlechner,  M., Putz,  R., Englmeier,  K. H., Reiser,  M., and Eckstein,  F., 1999, “In Situ Measurements of Articular Cartilage Deformation in Intact Femoropatellar Joint Under Static Loading,” J. Biomech., 32, pp. 1287–1295.
Oloyede,  A., and Broom,  N. D., 1991, “Is Classical Consolidation Theory Applicable to Articular Cartilage Deformation?” Clin. Biomech. (Los Angel. Calif.), 6, pp. 206–212.
Soltz,  M. A., and Ateshian,  G. A., 1998, “Experimental Verification and Theoretical Prediction of Cartilage Interstitial Fluid Pressurization at an Impermeable Contact Interface in Confined Compression,” J. Biomech., 31, pp. 927–934.
Armstrong,  C. G., Lai,  W. M., and Mow,  V. C., 1984, “An Analysis of the Unconfined Compression of Articular Cartilage,” J. Biomech. Eng., 106, pp. 165–173.
Park,  S., Krishnan,  R., Nicoll,  S. B., and Ateshian,  G. A., “Cartilage Interstitial Fluid Load Support in Unconfined Compression,” J. Biomech., (in review).
Krishnan, R., Kopacz, M., and Ateshian, G. A., 2003, “Verification of the Role of Interstitial Fluid Load Support in the Frictional Response of Bovine Articular Cartilage,” 49th Annual Meeting of the Orthopaedic Research Society, 28 , paper no. 0287.
Kim,  Y. J., Bonassar,  L. J., and Grodzinsky,  A. J., 1995, “The Role of Cartilage Streaming Potential, Fluid Flow and Pressure in the Stimulation of Chondrocyte Biosynthesis During Dynamic Compression,” J. Biomech., 28, pp. 1055–1066.
Buschmann,  M. D., Kim,  Y. J., Wong,  M., Frank,  E., Hunziker,  E. B., and Grodzinsky,  A. J., 1999, “Stimulation of Aggrecan Synthesis in Cartilage Explants By Cyclic Loading Is Localized to Regions of High Interstitial Fluid Flow,” Arch. Biochem. Biophys., 366, pp. 1–7.
Woo,  S. L., Lubock,  P., Gomez,  M. A., Jemmott,  G. F., Kuei,  S. C., and Akeson,  W. H., 1979, “Large Deformation Nonhomogeneous and Directional Properties of Articular Cartilage in Uniaxial Tension,” J. Biomech., 12, pp. 437–446.
Li,  L. P., Soulhat,  J., Buschmann,  M. D., and Shirazi-Adl,  A., 1999, “Nonlinear Analysis of Cartilage in Unconfined Ramp Compression Using a Fibril Reinforced Poroelastic Model,” Clin. Biomech. (Los Angel. Calif.), 14, pp. 673–682.
Kwan,  M. K., Lai,  W. M., and Mow,  V. C., 1990, “A Finite Deformation Theory for Cartilage and Other Soft Hydrated Connective Tissues--I. Equilibrium Results,” J. Biomech., 23, pp. 145–155.
Ateshian,  G. A., Warden,  W. H., Kim,  J. J., Grelsamer,  R. P., and Mow,  V. C., 1997, “Finite Deformation Biphasic Material Properties of Bovine Articular Cartilage From Confined Compression Experiments,” J. Biomech., 30, pp. 1157–1164.
Mak,  A. F., 1986, “The Apparent Viscoelastic Behavior of Articular Cartilage—The Contributions From the Intrinsic Matrix Viscoelasticity and Interstitial Fluid Flows,” J. Biomech. Eng., 108, pp. 123–130.
Setton,  L. A., Zhu,  W., and Mow,  V. C., 1993, “The Biphasic Poroviscoelastic Behavior of Articular Cartilage: Role of the Surface Zone in Governing the Compressive Behavior,” J. Biomech., 26, 581–592.
Zhu,  W., Mow,  V. C., Koob,  T. J., and Eyre,  D. R., 1993, “Viscoelastic Shear Properties of Articular Cartilage and the Effects of Glycosidase Treatments,” J. Orthop. Res., 11, pp. 771–781.
DiSilvestro,  M. R., and Suh,  J. K., 2001, “A Cross-Validation of the Biphasic Poroviscoelastic Model of Articular Cartilage in Unconfined Compression, Indentation, and Confined Compression,” J. Biomech., 34, pp. 519–525.
Huang,  C-Y., Soltz,  M. A., Kopacz,  M., Mow,  V. C., and Ateshian,  G. A., 2003, “Experimental Verification of the Role of Intrinsic Matrix Viscoelasticity and Tension-Compression Nonlinearity in the Biphasic Response of Cartilage in Unconfined Compression,” J. Biomech. Eng., 125, pp. 84–93.
Cohen,  Z. A., Roglic,  H., Grelsamer,  R. P., Henry,  J. H., Levine,  W. N., Mow,  V. C., and Ateshian,  G. A., 2001, “Patellofemoral Stresses During Open and Closed Kinetic Chain Exercises: An Analysis Using Computer Simulation,” Am. J. Sports Med., 29, pp. 480–487.
Mühlbauer,  R., Lukasz,  S., Faber,  S., Stammberger,  T., and Eckstein,  F., 2000, “Comparison of Knee Joint Cartilage Thickness in Triathletes and Physically Inactive Volunteers—3-D Analysis with Magnetic Imaging,” Am. J. Sports Med., 28, pp. 541–546.
Eckstein,  F., Faber,  S., Muhlbauer,  R., Hohe,  J., Englmeier,  K. H., Reiser,  M., and Putz,  R., 2002, “Functional Adaptation of Human Joints to Mechanical Stimuli,” Osteoarthritis Cartilage, 10, pp. 44–50.
Wu,  J. Z., Herzog,  W., and Epstein,  M., 1997, “An Improved Solution for the Contact of Two Biphasic Cartilage Layers,” J. Biomech., 30, pp. 371–375.
Wu,  J. Z., Herzog,  W., and Epstein,  M., 2000, “Joint Contact Mechanics in the Early Stages of Osteoarthritis,” Med. Eng. Phys., 22, pp. 1–12.
Donzelli,  P. S., Spilker,  R. L., Ateshian,  G. A., Mow,  V. C., 1999, “Contact Analysis of Biphasic Transversely Isotropic Cartilage Layers and Correlations With Tissue Failure,” J. Biomech., 32, pp. 1037–1047.
Garcia,  J. J., Altiero,  N. J., Haut,  R. C., 1998, “An Approach for the Stress Analysis of Transversely Isotropic Biphasic Cartilage Under Impact Load,” J. Biomech. Eng., 120, pp. 608–613.
Thompson,  R. C., Oegema,  T. R., Lewis,  J. L., and Wallace,  L., 1991, “Osteoarthrotic Changes After Acute Transarticular Load. An Animal Model,” J. Bone Jt. Surg., 73A, pp. 990–1001.
Atkinson,  P. J., and Haut,  R. C., 2001, “Injuries Produced by Blunt Trauma to the Human Patellofemoral Joint Vary With Flexion Angle of the Knee,” J. Orthop. Res., 19, pp. 827–833.
Atkinson,  T. S., Haut,  R. C., and Altiero,  N. J., 1998, “An Investigation of Biphasic Failure Criteria for Impact-Induced Fissuring of Articular Cartilage,” J. Biomech. Eng., 120, pp. 536–537.


Grahic Jump Location
Contact geometry and finite-element mesh in the deformed configuration. The mesh deformation has been scaled up for emphasis in this figure.
Grahic Jump Location
Total traction and interstitial fluid pressure at the contact interface between the cylindrical indenter and articular layer, at t=1 s. Results are shown on the left for the homogeneous models and on the right for the inhomogeneous models. (a) Patellar contact. (b) Femoral contact.
Grahic Jump Location
The interstitial fluid pressure field throughout the cartilage layer, at t=1 s. Results are presented as a contour map together with vector arrows indicating the magnitude and direction of relative fluid flux, for the representative case of the patellar layer with (a) inhomogeneous and (b) homogeneous properties. The mesh deformation is shown to scale.
Grahic Jump Location
(a,b) Maximum principal normal strain distribution in the articular layer, at t=1 s, for the inhomogeneous and homogeneous finite-element models of the patella, respectively; (c,d) maximum principal normal effective stress; (e,f ) minimum principal normal effective stress; (g,h) strain-energy density distribution. The mesh deformation is shown to scale.




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In