Tensile Properties of the Porcine Temporomandibular Joint Disc

[+] Author and Article Information
Michael S. Detamore, Kyriacos A. Athanasiou

Department of Bioengineering, Rice University, Houston, TX 77251

J Biomech Eng 125(4), 558-565 (Aug 01, 2003) (8 pages) doi:10.1115/1.1589778 History: Received July 25, 2002; Revised April 01, 2003; Online August 01, 2003
Copyright © 2003 by ASME
Topics: Stress , Disks , Tension , Fibers , Stiffness
Your Session has timed out. Please sign back in to continue.


Jagger, R. G., Bates, J. F., and Kopp, S., 1994, Temporomandibular Joint Dysfunction: Essentials, Butterworth-Heinemann, Oxford.
Gray, R. J. M., Davies, S. J., and Quayle, A. A., 1995, Temporomandibular Disorders: A Clinical Approach, British Dental Association, London.
Solberg,  W. K., Woo,  M. W., and Houston,  J. B., 1979, “Prevalence of Mandibular Dysfunction in Young Adults,” J. Am. Dent. Assoc., 98, pp. 25–34.
Farrar,  W. B., and McCarty,  W. L., 1979, “The TMJ Dilemma,” J. Ala. Dent. Assoc., 63, pp. 19–26.
Rees,  L. A., 1954, “The Structure and Function of the Mandibular Joint,” Br. Dent. J., 96, pp. 125–133.
Springer,  I. N., Fleiner,  B., Jepsen,  S., and Acil,  Y., 2001, “Culture of Cells Gained from Temporomandibular Joint Cartilage on Non-Absorbable Scaffolds,” Biomaterials, 22, pp. 2569–2577.
Bermejo,  A., Gonzalez,  O., and Gonzalez,  J. M., 1993, “The Pig as an Animal Model for Experimentation on the Temporomandibular Articular Complex,” Oral Surg., Oral Med., Oral Pathol., 75, pp. 18–23.
Strom,  D., Holm,  S., Clemensson,  E., Haraldson,  T., and Carlsson,  G. E., 1986, “Gross Anatomy of the Mandibular Joint and Masticatory Muscles in the Domestic Pig (Sus Scrofa),” Arch. Oral Biol., 31, pp. 763–768.
Berg,  R., 1973, “Contribution to the Applied and Topographical Anatomy of the Temporomandibular Joint of Some Domestic Mammals with Particular Reference to the Partial Resp. Total Resection of the Articular Disc,” Folia Morphol. (Prague), 21, pp. 202–204.
Trumpy,  I. G., and Lyberg,  T., 1995, “Surgical Treatment of Internal Derangement of the Temporomandibular Joint: Long-Term Evaluation of Three Techniques,” J. Oral Maxillofac Surg., 53, pp. 740–746.
Detamore, M. S., and Athanasiou, K. A., 2003, “Motivation, Characterization and Strategy for Tissue Engineering the Temporomandibular Joint Disc,” Tissue Engineering, (to be published).
Thomas,  M., Grande,  D., and Haug,  R. H., 1991, “Development of an in Vitro Temporomandibular Joint Cartilage Analog,” J. Oral Maxillofac Surg., 49, pp. 854–856.
Puelacher,  W. C., Wisser,  J., Vacanti,  C. A., Ferraro,  N. F., Jaramillo,  D., and Vacanti,  J. P., 1994, “Temporomandibular Joint Disc Replacement Made by Tissue-Engineered Growth of Cartilage,” J. Oral Maxillofac Surg., 52, pp. 1172–1177.
Girdler,  N. M., 1998, “In Vitro Synthesis and Characterization of a Cartilaginous Meniscus Grown from Isolated Temporomandibular Chondroprogenitor Cells,” Scand. J. Rheumatol., 27, pp. 446–453.
Detamore,  M. S., and Athanasiou,  K. A., 2003, “Structure and Function of the Temporomandibular Joint Disc: Implications for Tissue Engineering,” J. Oral Maxillofac. Surg. 61, pp. 494–506.
Schmolke,  C., 1994, “The Relationship between the Temporomandibular Joint Capsule, Articular Disc and Jaw Muscles,” J. Anat., 184(Pt 2), pp. 335–345.
Velasco,  J. R. Merida, Vazquez,  J. F. Rodriguez, and Collado,  J. Jimenez, 1993, “The Relationships between the Temporomandibular Joint Disc and Related Masticatory Muscles in Humans,” J. Oral Maxillofac Surg., 51, pp. 390–395.
Amor,  F. Ben, Carpentier,  P., Foucart,  J. M., and Meunier,  A., 1998, “Anatomic and Mechanical Properties of the Lateral Disc Attachment of the Temporomandibular Joint,” J. Oral Maxillofac Surg., 56, pp. 1164–1167.
Osborn,  J. W., 1985, “The Disc of the Human Temporomandibular Joint: Design, Function and Failure,” J. Oral Rehabil., 12, pp. 279–293.
Tanne,  K., Tanaka,  E., and Sakuda,  M., 1991, “The Elastic Modulus of the Temporomandibular Joint Disc from Adult Dogs,” J. Dent. Res., 70, pp. 1545–1548.
Tanaka,  E., Shibaguchi,  T., Tanaka,  M., and Tanne,  K., 2000, “Viscoelastic Properties of the Human Temporomandibular Joint Disc in Patients with Internal Derangement,” J. Oral Maxillofac Surg., 58, pp. 997–1002.
Tanaka,  E., Sasaki,  A., Tahmina,  K., Yamaguchi,  K., Mori,  Y., and Tanne,  K., 2001, “Mechanical Properties of Human Articular Disk and Its Influence on TMJ Loading Studied with the Finite Element Method,” J. Oral Rehabil., 28, pp. 273–279.
Tanaka,  E., Tanaka,  M., Hattori,  Y., Aoyama,  J., Watanabe,  M., Sasaki,  A., Sugiyama,  M., and Tanne,  K., 2001, “Biomechanical Behavior of Bovine Temporomandibular Articular Discs with Age,” Arch. Oral Biol., 46, pp. 997–1003.
Shengyi,  T., Yinghua,  X., Mongshi,  C., and Yongnian,  L., 1991, “Biomechanical Properties and Collagen Fiber Orientation of TMJ Discs in Dogs: Part 2. Tensile Mechanical Properties of the Discs,” J. Craniomandib Disord., 5, pp. 107–114.
Beatty,  M. W., Bruno,  M. J., Iwasaki,  L. R., and Nickel,  J. C., 2001, “Strain Rate Dependent Orthotropic Properties of Pristine and Impulsively Loaded Porcine Temporomandibular Joint Disk,” J. Biomed. Mater. Res., 57, pp. 25–34.
Kim, K. W., Wong, M. E., Helfrick, J. F., Thomas, J. B., and Athanasiou, K. A., 2003, “Biomechanical Characterization of the Superior Joint Space of the Porcine Temporomandibular Joint,” Annals of Biomedical Engineering (to be published).
Elliott,  D. M., Setton,  L. A., Shah,  M. P., Vail,  T. P., and Guilak,  F., 1996, “Effects of Meniscectomy on the Tensile Properties of Articular Cartilage,” ASME Adv. Bioeng., 33, pp. 247–248.
Elliott,  D. M., and Setton,  L. A., 2001, “Anisotropic and Inhomogeneous Tensile Behavior of the Human Anulus Fibrosus: Experimental Measurement and Material Model Predictions,” J. Biomech. Eng., 123, pp. 256–263.
Tissakht,  M., and Ahmed,  A. M., 1995, “Tensile Stress-Strain Characteristics of the Human Meniscal Material,” J. Biomech., 28, pp. 411–422.
Ferguson,  S. J., Bryant,  J. T., and Ito,  K., 2001, “The Material Properties of the Bovine Acetabular Labrum,” J. Orthop. Res., 19, pp. 887–896.
Roth,  V., and Mow,  V. C., 1980, “The Intrinsic Tensile Behavior of the Matrix of Bovine Articular Cartilage and Its Variation with Age,” J. Bone Jt. Surg., 62, pp. 1102–1117.
Akizuki,  S., Mow,  V. C., Muller,  F., Pita,  J. C., Howell,  D. S., and Manicourt,  D. H., 1986, “Tensile Properties of Human Knee Joint Cartilage: I. Influence of Ionic Conditions, Weight Bearing, and Fibrillation on the Tensile Modulus,” J. Orthop. Res., 4, pp. 379–392.
Kempson,  G. E., Freeman,  M. A., and Swanson,  S. A., 1968, “Tensile Properties of Articular Cartilage,” Nature (London), 220, pp. 1127–1128.
Setton,  L. A., Mow,  V. C., Muller,  F. J., Pita,  J. C., and Howell,  D. S., 1994, “Mechanical Properties of Canine Articular Cartilage Are Significantly Altered Following Transection of the Anterior Cruciate Ligament,” J. Orthop. Res., 12, pp. 451–463.
Setton,  L. A., Mow,  V. C., Muller,  F. J., Pita,  J. C., and Howell,  D. S., 1997, “Mechanical Behavior and Biochemical Composition of Canine Knee Cartilage Following Periods of Joint Disuse and Disuse with Remobilization,” Osteoarthritis and Cartilage , 5, pp. 1–16.
Elliott,  D. M., Guilak,  F., Vail,  T. P., Wang,  J. Y., and Setton,  L. A., 1999, “Tensile Properties of Articular Cartilage Are Altered by Meniscectomy in a Canine Model of Osteoarthritis,” J. Orthop. Res., 17, pp. 503–508.
Proctor,  C. S., Schmidt,  M. B., Whipple,  R. R., Kelly,  M. A., and Mow,  V. C., 1989, “Material Properties of the Normal Medial Bovine Meniscus,” J. Orthop. Res., 7, pp. 771–782.
Boardman,  N. D., Debski,  R. E., Warner,  J. J., Taskiran,  E., Maddox,  L., Imhoff,  A. B., Fu,  F. H., and Woo,  S. L., 1996, “Tensile Properties of the Superior Glenohumeral and Coracohumeral Ligaments,” J. Shoulder Elbow Surg., 5, pp. 249–254.
Lewis,  G., and Shaw,  K. M., 1997, “Tensile Properties of Human Tendo Achillis: Effect of Donor Age and Strain Rate,” J. Foot Ankle Surg., 36, pp. 435–445.
Woo,  S. L., Akeson,  W. H., and Jemmott,  G. F., 1976, “Measurements of Nonhomogeneous, Directional Mechanical Properties of Articular Cartilage in Tension,” J. Biomech., 9, pp. 785–791.
Woo,  S. L., Lubock,  P., Gomez,  M. A., Jemmott,  G. F., Kuei,  S. C., and Akeson,  W. H., 1979, “Large Deformation Nonhomogeneous and Directional Properties of Articular Cartilage in Uniaxial Tension,” J. Biomech., 12, pp. 437–446.
Egan,  J. M., 2000, “A Viscoelastic Analysis of the Tensile Weakening of Deep Femoral Head Articular Cartilage,” Proc. Inst. Mech. Eng., Part H: J. Eng. Med., 214, pp. 239–247.
Kempson,  G. E., 1991, “Age-Related Changes in the Tensile Properties of Human Articular Cartilage: A Comparative Study between the Femoral Head of the Hip Joint and the Talus of the Ankle Joint,” Biochim. Biophys. Acta, 1075, pp. 223–230.
Parsons,  J. R., and Black,  J., 1979, “Mechanical Behavior of Articular Cartilage: Quantitative Changes with Alteration of Ionic Environment,” J. Biomech., 12, pp. 765–773.
Fung, Y. C., 1993, Biomechanics: Mechanical Properties of Living Tissues, 2nd ed., Springer, New York.
Tanaka, E., personal communication.
Gage,  J. P., Shaw,  R. M., and Moloney,  F. B., 1995, “Collagen Type in Dysfunctional Temporomandibular Joint Disks,” The Journal of Prosthetic Dentistry, 74, pp. 517–520.
Scapino,  R. P., Canham,  P. B., Finlay,  H. M., and Mills,  D. K., 1996, “The Behavior of Collagen Fibers in Stress Relaxation and Stress Distribution in the Jaw-Joint Disc of Rabbits,” Arch. Oral Biol., 41, pp. 1039–1052.
Nagy,  N. B., and Daniel,  J. C., 1991, “Distribution of Elastic Fibers in the Developing Rabbit Craniomandibular Joint,” Arch. Oral Biol., 36, pp. 15–23.
Shengyi,  T., and Yinghua,  X., 1991, “Biomechanical Properties and Collagen Fiber Orientation of TMJ Discs in Dogs: Part 1. Gross Anatomy and Collagen Fiber Orientation of the Discs,” J. Craniomandib Disord., 5, pp. 28–34.
de Bont,  L. G., Liem,  R. S., Havinga,  P., and Boering,  G., 1985, “Fibrous Component of the Temporomandibular Joint Disk,” J. Craniomandibular Pract., 3, pp. 368–373.
Minarelli,  A. M., Santo Junior,  M. Del, and Liberti,  E. A., 1997, “The Structure of the Human Temporomandibular Joint Disc: A Scanning Electron Microscopy Study,” J. Orofac. Pain, 11, pp. 95–100.
Taguchi,  N., Nakata,  S., and Oka,  T., 1980, “Three-Dimensional Observation of the Temporomandibular Joint Disk in the Rhesus Monkey,” J. Oral Surg., 38, pp. 11–15.
Beek,  M., Aarnts,  M. P., Koolstra,  J. H., Feilzer,  A. J., and van Eijden,  T. M., 2001, “Dynamic Properties of the Human Temporomandibular Joint Disc,” J. Dent. Res., 80, pp. 876–880.
Tanaka,  E., Tanaka,  M., Miyawaki,  Y., and Tanne,  K., 1999, “Viscoelastic Properties of Canine Temporomandibular Joint Disc in Compressive Load-Relaxation,” Arch. Oral Biol., 44(12), pp. 1021–1026.
Fontenot,  M. G., 1985, “The Viscoelasticity of Human Temporomandibular Joint Discs,” Am. J. Phys. Anthropol., 66, pp. 168–169.


Grahic Jump Location
Superior view of the isolated TMJ disc, distinguishing the anterior band, intermediate zone, and posterior band
Grahic Jump Location
Schematic of a section of a TMJ disc, from which tensile specimens were obtained. A superior view of a right disc is shown here. From each disc section, exactly three specimens could be prepared, either in the mediolateral direction or the anteroposterior direction. In the mediolateral direction (shading=\\), specimens were obtained from the anterior band, intermediate zone, and posterior band. In the anteroposterior direction (shading=//), specimens were obtained from the medial, central and lateral regions
Grahic Jump Location
Schematic of the custom-made bath/grip assembly mounted into the Instron. B/G, custom-made bath/grip assembly; G, grips; TC, temperature controller; I, immersion heater. Bath diameter is 8 in.
Grahic Jump Location
Example of incremental stress relaxation, whereby a succession of stress relaxation responses is produced via a series of 15 min constant-strain increments. The specimen provided here was from the posterior band, tested in the mediolateral direction
Grahic Jump Location
Stress-strain plots constructed with incremental stress relaxation points from Fig. 4, demonstrating a clear linear region
Grahic Jump Location
Polarized light micrographs depicting the collagen fibers of the TMJ disc (400×). The top and bottom of this figure represent anterior and posterior, respectively, whereas left and right represent medial and lateral, respectively. Note the ringlike orientation of fibers around the disc periphery and anteroposterior fiber alignment in the center of the disc. The schematic diagram of the disc shows the regions A–E where micrographs were taken. (A) Anterior band—note the merging of anteroposterior fibers with mediolateral fibers. (B) Medial region and (D) Lateral region—note the continuation of a ring-like orientation of collagen fibers around the periphery of the disc; fiber density appears to be similar between these regions, but medial fibers appear to have larger diameters. (C) Intermediate zone—note the predominantly anteroposteriorly aligned fibers. (E) Posterior band—note the predominantly mediolateral fibers.



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In