0
TECHNICAL PAPERS: Bone/Orthopedic

Theoretical Investigation of an Artificial Joint With Micro-Pocket-Covered Component and Biphasic Cartilage on the Opposite Articulating Surface

[+] Author and Article Information
A. N. Suciu, T. Iwatsubo, M. Matsuda

MS-1 Laboratory, Department of Mechanical Engineering, Kobe University, 1-1 Rokkodai, Nada, 657-8501 Kobe, Japan

J Biomech Eng 125(4), 425-433 (Aug 01, 2003) (9 pages) doi:10.1115/1.1589505 History: Received March 14, 2002; Revised February 13, 2003; Online August 01, 2003
Copyright © 2003 by ASME
Your Session has timed out. Please sign back in to continue.

References

Huiskes, R., and Verdonschot, N., 1997, “Biomechanics of Artificial Joints: The Hip,” Basic Orthopaedic Biomechanics, V. C. Mow, and W. C. Hayes, eds., Lippincott-Raven, New York, pp. 395–460.
Mow, V. C., and Mak, A. F., 1987, “Lubrication of Diarthrodial Joints,” Handbook of Bioengineering, R. Skalak, and S. Chien, eds., McGraw-Hill, New York, pp. 5.1–5.34.
Fisher,  J., and Dowson,  D., 1991, “Tribology of Total Artificial Joints,” Proc. Inst. Mech. Eng., Part H: J. Eng. Med., 205, pp. 73–79.
Delecrin,  J., Oka,  M., Takahashi,  S., Yamamuro,  T., and Nakamura,  T., 1994, “Changes in Joint Fluid after Total Arthroplasty,” Clin. Orthop., 307, pp. 240–249.
Murakami,  T., Higaki,  H., Sawae,  Y., Ohtsuki,  N., Moriyama,  S., and Nakanishi,  Y., 1998, “Adaptive Multimode Lubrication in Natural Synovial Joints and Artificial Joints,” Proc. Inst. Mech. Eng., Part H: J. Eng. Med., 212, pp. 23–35.
Stewart,  T., Jin,  Z. M., and Fisher,  J., 1997, “Friction of Composite Cushion Bearings for Total Knee Joint Replacements under Adverse Lubrication Conditions,” Proc. Inst. Mech. Eng., Part H: J. Eng. Med., 211, pp. 451–465.
Kennedy,  F. E., Currier,  J. H., Plumet,  S., Duda,  J. L., Gestwick,  D. P., Collier,  J. P., Currier,  B. H., and Dubourg,  M-C., 2000, “Contact Fatigue Failure of Ultra-High Molecular Weight Polyethylene Bearing Components of Knee Prostheses,” ASME J. Tribol., 122, pp. 332–339.
Revell,  P. A., Al-Saffar,  N., and Kobayashi,  A., 1997, “Biological Reaction to Debris in Relation to Joint Prostheses,” Proc. Inst. Mech. Eng., Part H: J. Eng. Med., 211, pp. 187–197.
Callaghan,  J. J., Insall,  J. N., Greenwald,  A. S., Dennis,  D. A., Komisteck,  R. D., Murray,  D. W., Bourne,  R. B., Rorabeck,  C. H., and Dorr,  L. D., 2000, “Mobile-Bearing Knee Replacement,” J. Bone Jt. Surg., Am. Vol., 82(7), pp. 1020–1048.
Sathasivam,  S., and Walker,  P. S., 1999, “The Conflicting Requirements of Laxity and Conformity in Total Knee Replacement,” J. Biomech., 32, pp. 239–247.
Sathasivam,  S., Walker,  P. S., Campbell,  P. A., and Rayner,  K., 2001, “The Effect of Contact Area on Wear in Relation to Fixed and Mobile Bearing Knee Replacements,” J. Biomed. Mater. Res., 58, pp. 282–290.
Walker,  P. S., and Sathasivam,  S., 2000, “Design Forms of Total Knee Replacement,” Proc. Inst. Mech. Eng., Part H: J. Eng. Med., 214, pp. 101–119.
Wang,  A., Essner,  A., Polineni,  V. K., Stark,  C., and Dumbleton,  J. H., 1998, “Lubrication and Wear of Ultra-High Molecular Polyethylene in Total Joint Replacements,” Tribol. Int., 31, pp. 17–33.
Scholes,  S. C., Unsworth,  A., Hall,  R. M., and Scoot,  R., 2000, “The Effects of Material Combination and Lubricant on the Friction of Total Hip Prostheses,” Wear, 241, pp. 209–213.
Chan,  F. W., Bobyn,  J. D., Medley,  J. B., Krygier,  J. J., and Tanzer,  M., 1999, “Wear and Lubrication of Metal-on-Metal Hip Implants,” Clin. Orthop. Relat. Res., 369, pp. 10–24.
Heimke,  G., Leyen,  S., and Willmann,  G., 2002, “Knee Arthroplasty: Recently Developed Ceramics Offer New Solutions,” Biomaterials, 23, pp. 1539–1551.
Auger, D. D., Medley, J. B., Fisher, J., and Dowson, D., 1990, “A Preliminary Investigation of the Cushion Form Bearing in Artificial Joints,” Mechanics of Coatings, D. Dowson, ed., Elsevier, Amsterdam, pp. 264–269.
Auger,  D. D., Dowson,  D., and Fisher,  J., 1995, “Cushion Form Bearing for Total Knee Joint Replacement. Part 1: Design, Friction and Lubrication,” Proc. Inst. Mech. Eng., Part H: J. Eng. Med., 209, pp. 73–81.
Caravia,  L., Dowson,  D., Fisher,  J., Corkhill,  P. H., and Tighe,  B. J., 1995, “Friction of Hydrogel and Polyurethane Elastic Layers when Sliding Each Other Under a Mixed Lubrication Regime,” Wear, 181–183, pp. 236–240.
Kelly,  P. A., and O’Connor,  J. J., 1996, “Transmission of Rapidly Applied Loads Through Articular Cartilage. Part 1: Uncracked Cartilage,” Proc. Inst. Mech. Eng., Part H: J. Eng. Med., 210, pp. 27–37.
Kitano,  T., Ateshian,  G. A., Mow,  V. C., Kadoya,  Y., and Yamano,  Y., 2001, “Constituents and pH Changes in Protein Rich Hyaluronan Solution Affect the Biotribological Properties of Artificial Articular Joints,” J. Biomech., 34, pp. 1031–1037.
Pinkus, O., and Sternlicht, B., 1961, Theory of Hydrodynamic Lubrication, McGraw-Hill, New York.
Soltz,  M. A., and Ateshian,  G. A., 1998, “Experimental Verification and Theoretical Prediction of Cartilage Interstitial Fluid Pressurization at an Impermeable Contact Interface in Confined Compression,” J. Biomech., 31, pp. 927–934.
Iwatsubo, T., Suciu, A. N., Matsuda, M., and Kurosaka, M., 2001, “Development of a Poro-Elasto Squeeze Film Lubrication Mechanism for the Artificial Knee Joint,” Proceeding of the 2001 Bioengineering Conference, Kamm et al., R. D. eds., ASME BED-Vol 50 , pp. 447–448.
Iwatsubo, T., Matsuda, M., Suciu, A. N., and Kurosaka, M., 2000, “A Poro-Elasto-Squeeze Film Analysis for the Artificial Knee Joint,” Proceeding of the Biotribology Satellite Forum of the International Tribology Conference Nagasaki, Fukuoka, Japan, pp. 35–38.
Suciu, A. N., Iwatsubo, T., Matsuda, M., and Nishino, T., 2002, “Experimental Study of an Artificial Knee Joint with PVA-Hydrogel Cartilage,” Proceedings of the 4th World Congress of Biomechanics, Calgary, Canada, CD-ROM, p. 1.
Suciu, A. N., Iwatsubo, T., Matsuda, M., and Nishino, T., 2002, “Experimental Study of an Artificial Knee Joint with Poro-Elastic-Hydrated Tibial Cartilage and Micro-Pocket-Covered Femoral Surface,” Proceedings of the Mechanical Engineering Congress, Tokyo, Japan, 02-1 , pp. 43–45.
Mow,  V. C., Kuei,  S. C., Lai,  W. M., and Armstrong,  C. G., 1980, “Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiments,” ASME J. Biomech. Eng., 102, pp. 73–84.
Armstrong,  C. G., Lai,  W. M., and Mow,  V. C., 1984, “An Analysis of the Unconfined Compression of Articular Cartilage,” ASME J. Biomech. Eng., 106, pp. 165–173.
Ateshian,  G. A., 1997, “A Theoretical Formulation for Boundary Friction in Articular Cartilage,” ASME J. Biomech. Eng., 119, pp. 81–86.
Etsion,  I., Kligerman,  Y., and Halperin,  G., 1999, “Analytical and Experimental Investigation of Laser-Textured Mechanical Seal Faces,” Tribol. Trans., 42, pp. 511–516.
Mak,  A. F., Lai,  W. M., and Mow,  V. C., 1987, “Biphasic Indentation of Articular Cartilage-I. Theoretical Analysis,” J. Biomech., 20, pp. 703–714.
ISO, 1999, “Implants for Surgery-Wear of Total Knee Joint Prostheses-Part 000: Loading and Displacement Parameters for Wear Testing Machines With Displacement Control and Corresponding Environmental Conditions for Test,” ISO/WD 14243-000, pp. 1–9.
Bergmann,  G., Deuretzbacher,  G., Heller,  M., Graichen,  F., and Rolhmann,  A., 2001, “Hip Contact Forces and Gait Patterns from Routine Activities,” J. Biomech., 34, pp. 859–871.
Ateshian,  G. A., Wang,  H., and Lai,  W. M., 1998, “The Role of Interstitial Fluid Pressurization and Surface Porosities on the Boundary Friction of Articular Cartilage,” ASME J. Tribol., 120, pp. 241–251.
Hildebrand, F. B., 1976, Advanced Calculus for Application, 2nd ed., Prentice-Hall, New Jersey, pp. 384–417.
Goldsmith,  A. A. J., and Clift,  S. E., 1998, “Investigation into the Biphasic Properties of a Hydrogel for Use in a Cushion Form Replacement Joint,” ASME J. Biomech. Eng., 120, pp. 362–369.
Ateshian,  G. A., Warden,  W. H., Kim,  J. J., Grelsamer,  R. P., and Mow,  V. C., 1997, “Finite Deformation Biphasic Material Properties of Bovine Articular Cartilage From Confined Compression Experiments,” J. Biomech., 30, pp. 1157–1164.
Holmes,  M. H., and Mow,  V. C., 1990, “The Non-Linear Characteristics of Soft Gels and Hydrated Connective Tissues in Ultrafiltration,” J. Biomech., 23, pp. 1145–1156.
Stammen,  J. A., Williams,  S., Ku,  D. N., and Guldberg,  R. E., 2001, “Mechanical Properties of a Novel PVA Hydrogel in Shear and Unconfined Compression,” Biomaterials, 22, pp. 799–806.
Ambrosio,  L., De Santis,  R., and Nicolais,  L., 1998, “Composite Hydrogels for Implants,” Proc. Inst. Mech. Eng., Part H: J. Eng. Med., 212, pp. 93–99.
Oka,  M., Ushio,  K., Kumar,  P., Hyon,  S. H., Nakamura,  T., and Fujita,  H., 2000, “Development of Artificial Articular Cartilage,” Proc. Inst. Mech. Eng., Part H: J. Eng. Med., 214, pp. 59–68.
Gu,  Z. Q., Xiao,  J. M., and Lou,  S. Q., 1999, “The Mechanical-Chemical Attachment between the Artificial Articular Cartilage (PVA-hydrogel) and Metal Substrate (or Underlying Bone),” Bio-Medical Materials and Engineering, 9, pp. 347–351.

Figures

Grahic Jump Location
Novel bearing system for artificial joints (a) and applications in total joint replacement of knee and hip (b)
Grahic Jump Location
Physical model of the bearing system for artificial joints
Grahic Jump Location
Confined (a) and unconfined (b) compression of the biphasic cartilage
Grahic Jump Location
History of the knee dimensionless load during a walking cycle
Grahic Jump Location
Time variation of the dimensionless fluid pressure p/pa(k=10−16 m4/(N⋅s);HA=1 MPa;h1=1,2,3 mm;pa=1 MPa;T=10−2−10−1 s;TP=102−103 s)
Grahic Jump Location
Time variation of the effective friction coefficient μeff, for smooth and micro-pocket-covered components
Grahic Jump Location
Micro-pockets dimensionless depth h̄ versus the porosity of the micro-pocket-covered component ϕ2f, for natural (T̄=10−6−10−3) and artificial cartilage (T̄=10−8−10−5) at Γ=1
Grahic Jump Location
Micro-pockets dimensionless depth h̄ versus the porosity of the micro-pocket-covered component ϕ2f, for natural (Γ=1) and artificial cartilage (Γ=0.1−1) at T̄=5⋅10−6
Grahic Jump Location
Micro-pockets depth h2 versus permeability of the biphasic cartilage k, for different porosities of the micro-pocket-covered component ϕ2f(pa=1 MPa;HA=1 MPa;h1=3 mm;T=0.1 s)

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In