0
TECHNICAL PAPERS: Bone/Orthopedic

Alterations in the Mechanical Properties of the Human Chondrocyte Pericellular Matrix With Osteoarthritis

[+] Author and Article Information
Leonidas G. Alexopoulos

Department of Surgery, Duke University Medical Center, Durham, NC 27710, and Department of Biomedical Engineering, Duke University, Durham, NC 27708

Mansoor A. Haider

Department of Mathematics, North Carolina State University, Raleigh, NC 27695

Thomas P. Vail

Department of Surgery, Duke University Medical Center, Durham, NC 27710

Farshid Guilak

Department of Surgery, Duke University Medical Center, Durham, NC 27710, Department of Biomedical Engineering, Duke University, Durham, NC 27708

J Biomech Eng 125(3), 323-333 (Jun 10, 2003) (11 pages) doi:10.1115/1.1579047 History: Received August 13, 2002; Revised January 22, 2003; Online June 10, 2003
Copyright © 2003 by ASME
Your Session has timed out. Please sign back in to continue.

References

Helminen, H. J., Jurvelin, J., Kiviranta, I., Paukkonen, K., Saamanen, A. M., and Tammi, M., 1987, “Joint Loading Effects on Articular Cartilage: A Historical Review,” Joint Loading: Biology and Health of Articular Structures, H. J. Helminen et al., eds., Wright and Sons, Bristol, UK, pp. 1–46.
Guilak,  F., Ratcliffe,  A., Lane,  N., Rosenwasser,  M. P., and Mow,  V. C., 1994, “Mechanical and Biochemical Changes in the Superficial Zone of Articular Cartilage in Canine Experimental Osteoarthritis,” J. Orthop. Res., 12, pp. 474–484.
Setton,  L. A., Mow,  V. C., Muller,  F. J., Pita,  J. C., and Howell,  D. S., 1994, “Mechanical Properties of Canine Articular Cartilage are Significantly Altered Following Transection of the Anterior Cruciate Ligament,” J. Orthop. Res., 12, pp. 451–463.
Stockwell, R. A., 1987, “Structure and Function of the Chondrocyte Under Mechanical Stress,” Joint Loading: Biology and Health of Articular Structures, H. J. Helminen, et al., eds., Wright and Sons, Bristol, UK, pp. 126–148.
van Campen, G. P. J., and van de Stadt, R. J., 1987, “Cartilage and Chondrocytes Responses to Mechanical Loading in Vitro,” Joint Loading: Biology and Health of Articular Structures, H. J. Helminen et al., eds., Wright and Sons, Bristol, UK, pp. 112–125.
Freeman,  P. M., Natarjan,  R. N., Kimura,  J. H., and Andriacchi,  T. P., 1994, “Chondrocyte Cells Respond Mechanically to Compressive Loads,” J. Orthop. Res., 12, pp. 311–320.
Guilak, F., Sah, R. L., and Setton, L. A., 1997, “Physical Regulation of Cartilage Metabolism,” Basic Orthopaedic Biomechanics, V. C. Mow and W. C. Hayes, eds., Lippincott-Raven, Philadelphia, PA, pp. 179–207.
Mobasheri,  A., Carter,  S. D., Martin-Vasallo,  P., and Shakibaei,  M., 2002, “Integrins and Stretch Activated Ion Channels; Putative Components of Functional Cell Surface Mechanoreceptors in Articular Chondrocytes,” Cell Biol. Int., 26, pp. 1–18.
Mow,  V. C., Wang,  C. C., and Hung,  C. T., 1999, “The Extracellular Matrix, Interstitial Fluid and Ions as a Mechanical Signal Transducer in Articular Cartilage,” Osteoarthritis Cartilage, 7, pp. 41–58.
Poole,  C. A., Ayad,  S., and Gilbert,  R. T., 1992, “Chondrons From Articular Cartilage. V. Immunohistochemical Evaluation of Type VI Collagen Organization in Isolated Chondrons by Light, Confocal and Electron Microscopy,” J. Cell. Sci., 103, pp. 1101–1110.
Poole,  C. A., 1997, “Articular Cartilage Chondrons: Form, Function and Failure,” J. Anat., 191(Pt. 1), pp. 1–13.
Smirzai, J. A., 1974, “The Concept of the Chondron as a Biomechanical Unit,” Biopolymer und Biomechanik von Bindegewebssystemen, F. Hartmann, eds., Academic Press, New York, pp. 87–91.
Benninghoff,  A., 1925, “Form und bau der Gelenkknorpel in ihren Beziehungen Zur Funktion: Zweiter Teil: Der Aufbau des Gelenkknorpels in sienen Bezienhungen zur Funktion,” Z. Zellforsch Mikrosk Anat., 2, pp. 783–862.
Poole,  C. A., Flint,  M. H., and Beaumont,  B. W., 1987, “Chondrons in Cartilage: Ultrastructural Analysis of the Pericellular Microenvironment in Adult Human Articular Cartilages,” J. Orthop. Res., 5, pp. 509–522.
Poole,  C. A., Ayad,  S., and Schofield,  J. R., 1988, “Chondrons From Articular Cartilage: I. Immunolocalization of Type VI Collagen in the Pericellular Capsule of Isolated Canine Tibial Chondrons,” J. Cell. Sci., 90(Pt. 4), pp. 635–643.
Poole,  C. A., Honda,  T., Skinner,  S. J., Schofield,  J. R., Hyde,  K. F., and Shinkai,  H., 1990, “Chondrons From Articular Cartilage (II): Analysis of the Glycosaminoglycans in the Cellular Microenvironment of Isolated Canine Chondrons,” Connect. Tissue Res., 24, pp. 319–330.
Poole,  C. A., Glant,  T. T., and Schofield,  J. R., 1991, “Chondrons From Articular Cartilage. (IV). Immunolocalization of Proteoglycan Epitopes in Isolated Canine Tibial Chondrons,” J. Histochem. Cytochem., 39, pp. 1175–1187.
Poole,  C. A., Matsuoka,  A., and Schofield,  J. R., 1991, “Chondrons From Articular Cartilage. III. Morphologic Changes in the Cellular Microenvironment of Chondrons Isolated From Osteoarthritic Cartilage,” Arthritis Rheum., 34, pp. 22–35.
Poole,  C. A., Gilbert,  R. T., Herbage,  D., and Hartmann,  D. J., 1997, “Immunolocalization of Type IX Collagen in Normal and Spontaneously Osteoarthritic Canine Tibial Cartilage and Isolated Chondrons,” Osteoarthritis Cartilage, 5, pp. 191–204.
Poole,  C. A., Flint,  M. H., and Beaumont,  B. W., 1988, “Chondrons Extracted From Canine Tibial Cartilage: Preliminary Report on Their Isolation and Structure,” J. Orthop. Res., 6, pp. 408–419.
Greco,  F., Specchia,  N., Falciglia,  F., Toesca,  A., and Nori,  S., 1992, “Ultrastructural Analysis of the Adaptation of Articular Cartilage to Mechanical Stimulation,” Ital. J. Orthop. Traumatol., 18, pp. 311–321.
Poole, C. A., 1992, “Chondrons: The Chondrocyte and Its Pericellular Microenvironment,” Articular Cartilage and Osteoarthritis, K. E. Kuettner et al., eds., Academic Press, New York, pp. 201–220.
Lee,  V., Cao,  L., Zhang,  Y., Kiani,  C., Adams,  M. E., and Yang,  B. B., 2000, “The Roles of Matrix Molecules in Mediating Chondrocyte Aggregation, Attachment, and Spreading,” J. Cell. Biochem., 79, pp. 322–333.
Loeser,  R. F., Sadiev,  S., Tan,  L., and Goldring,  M. B., 2000, “Integrin Expression by Primary and Immortalized Human Chondrocytes: Evidence of a Differential Role for Alpha1Beta1 and Alpha2Beta1 Integrins in Mediating Chondrocyte Adhesion to Types II and VI Collagen,” Osteoarthritis Cartilage, 8, pp. 96–105.
Knudson,  W., and Loeser,  R. F., 2002, “CD44 and Integrin Matrix Receptors Participate in Cartilage Homeostasis,” Cell. Mol. Life Sci., 59, pp. 36–44.
Guilak,  F., and Mow,  V. C., 2000, “The Mechanical Environment of the Chondrocyte: A Biphasic Finite Element Model of Cell-Matrix Interactions in Articular Cartilage,” J. Biomech., 33, pp. 1663–1673.
Ateshian,  G. A., Warden,  W. H., Kim,  J. J., Grelsamer,  R. P., and Mow,  V. C., “Finite Deformation Biphasic Material Properties of Bovine Articular Cartilage From Confined Compression Experiments.,” J. Biomech., 30 , pp. 1157–1164.
Mow, V. C., Bachrach, N., Setton, L. A., and Guilak, F., 1994, “Stress, Strain, Pressure, and Flow Fields in Articular Cartilage,” Cell Mechanics and Cellular Engineering, V. C. Mow, et al., eds., Springer-Verlag, New York, pp. 345–379.
Bursac,  P., McGrath,  C. V., Eisenberg,  S. R., and Stamenovic,  D., 2000, “A Microstructural Model of Elastostatic Properties of Articular Cartilage in Confined Compression,” ASME J. Biomech. Eng., 122, pp. 347–353.
Soltz,  M. A., and Ateshian,  G. A., 2000, “A Conewise Linear Elasticity Mixture Model for the Analysis of Tension-Compression Nonlinearity in Articular Cartilage,” ASME J. Biomech. Eng., 122, pp. 576–586.
Wang,  C. C.-B., Hung,  C. T., and Mow,  V. C., 2001, “Analysis of the Effects of Depth-Dependent Aggregate Modulus on Articular Cartilage Stress-Relaxation Behavior in Compression,” J. Biomech., 34(1), pp. 75–84.
Hori,  R. Y., and Mockros,  L. F., 1976, “Indentation Tests of Human Articular Cartilage,” J. Biomech., 9, pp. 259–268.
Mow,  V. C., Kuei,  S. C., Lai,  W. M., and Armstrong,  C. G., 1980, “Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiments,” ASME J. Biomech. Eng., 102, pp. 73–84.
Athanasiou,  K. A., Rosenwasser,  M. P., Buckwalter,  J. A., Malinin,  T. I., and Mow,  V. C., 1991, “Interspecies Comparisons of in situ Intrinsic Mechanical Properties of Distal Femoral Cartilage,” J. Orthop. Res., 9, pp. 330–340.
Zhu,  W., Mow,  V. C., Koob,  T. J., and Eyre,  D. R., 1993, “Viscoelastic Shear Properties of Articular Cartilage and the Effects of Glycosidase Treatments,” J. Orthop. Res., 11, pp. 771–781.
Knight,  M. M., van de Breevaart Bravenboer,  J., Lee,  D. A., van Osch,  G. J., Weinans,  H., and Bader,  D. L., 2002, “Cell and Nucleus Deformation in Compressed Chondrocyte-Alginate Constructs: Temporal Changes and Calculation of Cell Modulus,” Biochim. Biophys. Acta, 1570, pp. 1–8.
Jones,  W. R., Ting-Beall,  H. P., Lee,  G. M., Kelley,  S. S., Hochmuth,  R. M., and Guilak,  F., 1997, “Mechanical Properties of Human Chondrocytes and Chondrons From Normal and Osteoarthritic Cartilage,” Transactions of the Orthopaedic Research Society, 21, p. 199.
Jones,  W. R., Lee,  G. M., Kelley,  S. S., and Guilak,  F., 1999, “Viscoelastic Properties of Chondrocytes From Normal and Osteoarthritic Human Cartilage,” Transactions of the Orthopaedic Research Society, 24, p. 157.
Jones,  W. R., Ting-Beall,  H. P., Lee,  G. M., Kelley,  S. S., Hochmuth,  R. M., and Guilak,  F., 1999, “Alterations in the Young’s Modulus and Volumetric Properties of Chondrocytes Isolated From Normal and Osteoarthritic Human Cartilage,” J. Biomech., 32, pp. 119–127.
Trickey,  T. R., Lee,  M., and Guilak,  T., 2000, “Viscoelastic Properties of Chondrocytes From Normal and Osteoarthritic Human Cartilage,” J. Orthop. Res., 18, pp. 891–898.
Koay,  E. J., Shieh,  A. C., and Athanasiou,  K. A., 2001, “Development of a Novel Method for Creep Indentation of Single Chondrocytes,” Ann. Biomed. Eng., 29(Supplement 1), p. S–22.
Koay, E. J., Shieh, A. C., and Athanasiou, K. A., 2002, “Creep Indentation of Single Cells,” ASME J. Biomech. Eng., accepted for publication.
Knight,  M. M., Ross,  J. M., Sherwin,  A. F., Lee,  D. A., Bader,  D. L., and Poole,  C. A., 2001, “Chondrocyte Deformation Within Mechanically and Enzymatically Extracted Chondrons Compressed in Agarose,” Biochim. Biophys. Acta, 1526, pp. 141–146.
Lee,  G. M., Poole,  C. A., Kelley,  S. S., Chang,  J., and Caterson,  B., 1997, “Isolated Chondrons: A Viable Alternative for Studies of Chondrocyte Metabolism in Vitro,” Osteoarthritis Cartilage, 5, pp. 261–274.
Evans,  E., and Yeung,  A., 1989, “Apparent Viscosity and Cortical Tension of Blood Granulocytes Determined by Micropipet Aspiration,” Biophys. J., 56, pp. 151–160.
Hochmuth,  R. M., 2000, “Micropipette Aspiration of Living Cells,” J. Biomech., 33, pp. 15–22.
Evans,  E. A., 1973, “New Membrane Concept Applied to the Analysis of Fluid Shear- and Micropipette-Deformed Red Blood Cells,” Biophys. J., 13, pp. 941–954.
Ting-Beall,  H. P., Needham,  D., and Hochmuth,  R. M., 1993, “Volume and Osmotic Properties of Human Neutrophils,” Blood, 81, pp. 2774–2780.
Theret,  D. P., Levesque,  M. J., Sato,  M., Nerem,  R. M., and Wheeler,  L. T., 1988, “The Application of a Homogeneous Half-Space Model in the Analysis of Endothelial Cell Micropipette Measurements,” ASME J. Biomech. Eng., 110, pp. 190–199.
Sato,  M., Theret,  D. P., Wheeler,  L. T., Oshima,  N., and Nerem,  R. M., 1990, “Application of the Micropipette Technique to the Measurement of Cultured Porcine Aortic Endothelial Cell Viscoelastic Properties,” ASME J. Biomech. Eng., 112, pp. 263–268.
Aoki,  T., Ohashi,  T., Matsumoto,  T., and Sato,  M., 1997, “The Pipette Aspiration Applied to the Local Stiffness Measurement of Soft Tissues,” Ann. Biomed. Eng., 25, pp. 581–587.
Haider,  M. A., and Guilak,  F., 2000, “An Axisymmetric Boundary Integral Model for Incompressible Linear Viscoelasticity: Application to the Micropipette Aspiration Contact Problem,” ASME J. Biomech. Eng., 122, pp. 236–244.
Haider,  M. A., and Guilak,  F., 2002, “An Axisymmetric Boundary Integral Model for Assessing Elastic Cell Properties in the Micropipette Aspiration Contact Problem,” ASME J. Biomech. Eng., 124, pp. 586–595.
Kumar,  M., and Hiremath,  K. U., 1982, “Annular Punch Problem for an Elastic Layer Overlying an Elastic Foundation,” Indian J. Pure Appl. Math., 13(5), pp. 573–580.
Barber, J. R., 1992, Elasticity, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 200–203.
Sneddon,  I. N., 1947, “Note on a Boundary Value Problem of Reissner and Sagoci,” J. Appl. Phys., 18, pp. 130–132.
Gladwell, G. M. L., 1980, Contact Problems in the Classical Theory of Elasticity, Alphen aan den Rijn, The Netherlands.
Erdelyi, A., Magnus, W., Oberhettinger, F., and Tricomi, F. G., 1953, Higher Transcendental Functions, McGraw-Hill, New York, p. 101.
Guilak,  F., 2000, “The Deformation Behavior and Viscoelastic Properties of Chondrocytes in Articular Cartilage,” Biorheology, 37, pp. 27–44.
Guilak,  F., Jones,  W. R., Ting-Beall,  H. P., and Lee,  G. M., 1999, “The Deformation Behavior and Mechanical Properties of Chondrocytes in Articular Cartilage,” Osteoarthritis Cartilage, 7, pp. 59–70.
Schinagl,  R. M., Gurskis,  D., Chen,  A. C., and Sah,  R. L., 1997, “Depth-Dependent Confined Compression Modulus of Full-Thickness Bovine Articular Cartilage,” J. Orthop. Res., 15, pp. 499–506.
Chen,  S. S., Falcovitz,  Y. H., Schneiderman,  R., Maroudas,  A., and Sah,  R. L., 2001, “Depth-Dependent Compressive Properties of Normal Aged Human Femoral Head Articular Cartilage: Relationship to Fixed Charge Density,” Osteoarthritis Cartilage, 9, pp. 561–569.
Guilak,  F., Ratcliffe,  A., and Mow,  V. C., 1995, “Chondrocyte Deformation and Local Tissue Strain in Articular Cartilage: A Confocal Microscopy Study,” J. Orthop. Res., 13, pp. 410–421.
Akizuki,  S., Mow,  V. C., Muller,  F., Pita,  J. C., and Howell,  D. S., 1987, “Tensile Properties of Human Knee Joint Cartilage. II. Correlations Between Weight Bearing and Tissue Pathology and the Kinetics of Swelling,” J. Orthop. Res., 5, pp. 173–186.
Setton,  L. A., Mow,  V. C., and Howell,  D. S., 1995, “Mechanical Behavior of Articular Cartilage in Shear is Altered by Transection of the Anterior Cruciate Ligament,” J. Orthop. Res., 13, pp. 473–482.
LeRoux,  M. A., Arokoski,  J., Vail,  T. P., Guilak,  F., Hyttinen,  M. M., Kiviranta,  I., and Setton,  L. A., 2000, “Simultaneous Changes in the Mechanical Properties, Quantitative Collagen Organization, and Proteoglycan Concentration of Articular Cartilage Following Canine Meniscectomy,” J. Orthop. Res., 18, pp. 383–392.
Lee,  G. M., Paul,  T. A., Slabaugh,  M., and Kelley,  S. S., 2000, “The Incidence of Enlarged Chondrons in Normal and Osteoarthritic Human Cartilage and Their Relative Matrix Density,” Osteoarthritis Cartilage, 8, pp. 44–52.
Guilak,  F., Alexopoulos,  L. G., Nielsen,  R., Ting-Beall,  H. P., and Haider,  M. A., 2002, “The Biomechanical Properties of the Chondrocyte Pericellular Matrix: Micropipette Aspiration of Mechanically Isolated Chondrons,” Transactions of the Orthopaedic Research Society, 27, p. 405.
Hing,  W. A., Sherwin,  A. F., and Poole,  C. A., 2002, “The Influence of the Pericellular Microenvironment on the Chondrocyte Response to Osmotic Challenge,” Osteoarthritis Cartilage, 10, pp. 297–307.
Knight,  M. M., Lee,  D. A., and Bader,  D. L., 1998, “The Influence of Elaborated Pericellular Matrix on the Deformation of Isolated Articular Chondrocytes Cultured in Agarose,” Biochim. Biophys. Acta, 1405, pp. 67–77.
Winter,  G. M., Poole,  C. A., Ilic,  M. Z., Ross,  J. M., Robinson,  H. C., and Handley,  C. J., 1998, “Identification of Distinct Metabolic Pools of Aggrecan and Their Relationship to Type VI Collagen in the Chondrons of Mature Bovine Articular Cartilage Explants,” Connect. Tissue Res., 37, pp. 277–293.

Figures

Grahic Jump Location
The chondron isolation technique—microaspirator: The device consists of a 30 ml syringe with a trimmed 22-gauge needle. The plunger was secured in the upright position, and a constant suction pressure from a vacuum line (∼50 kPa) was applied to the syringe. The cartilage slice was immersed in medium. After ∼3 minutes of application of suction pressure to the top or bottom side of the slice, the aspirated media was centrifuged and the bottom 2 ml was collected.
Grahic Jump Location
(a) Micropipette aspiration of the chondron; (b) schematic representation of the elastic layered half-space model. The layer corresponds to the PCM and the substrate to the chondrocyte. Under the action of the suction pressure Δp, the layer is drawn into the micropipette forming a projection length L (aspiration length).
Grahic Jump Location
Validation of the layered model: (a) Displacement profiles using the layered model reduced to an incompressible elastic half-space model. The y-axis is the dimensionless projection of the layer surface inside the micropipette. The pipette wall extends from r/ri=1 to r/ri=1.5. (b) Displacement profiles for the incompressible elastic half-space model developed by Theret et al. 49 (adapted with permission). The two plots are in excellent agreement.
Grahic Jump Location
Effect of the layer thickness h* and the Young’s moduli ratio Elayer/Esubstrate in the calculation of the constant C* for the Young’s modulus of the layer (Eq. (33)) assuming incompressibility (ν12=0.5) and r0*=1.5. If Elayer/Esubstrate=1 or h*→∞, we obtain the half-space solution (C*=0.98). If Elayer/Esubstrate→∞, the model reduces to the aspiration of a shell.
Grahic Jump Location
Effect of the Poisson’s ratio of the layer (ν1) in the calculation of the constant C* (Eq. (33)). For simplicity, the results of the shell case are presented (Elayer/Esubstrate→∞).
Grahic Jump Location
Young’s moduli of the PCM calculated using the layered model. Significant difference of the Young’s moduli of PCM were observed between non-OA and OA chondrons for both the surface and middle/deep zones (*p<0.05,**p<0.001 versus the non-OA counterpart). No significant differences were observed between surface and middle/deep zone.
Grahic Jump Location
Young’s modulus of the PCM determined using the half-space model (white bar), the layered model (gray bar), and the shell model (black bar). Significant differences were found between non-OA and OA chondrons using either model (*p<0.001 versus the non-OA controls). The data is pooled for surface and middle/deep zones. For the non-OA chondrons, the half-space model predicts ∼38% lower Young’s modulus than the other two models; for OA chondrons this difference is ∼20% (**p<0.001 versus layered model or shell model). The shell and layered model predict almost the same Young’s modulus.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In