0
TECHNICAL PAPERS: Soft Tissue

Determination of Optimal Graft Lengths for Posterior Cruciate Ligament Reconstruction—A Theoretical Analysis

[+] Author and Article Information
Guoan Li

Orthopaedic Biomechanics Laboratory MGH/BIDMC and Harvard Medical School, Boston, MA 02214

Louis DeFrate, Jeremy Suggs

Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139

Thomas Gill

Orthopaedic Biomechanics Laboratory MGH/BIDMC and Harvard Medical School, Boston, MA 02215

J Biomech Eng 125(2), 295-299 (Apr 09, 2003) (5 pages) doi:10.1115/1.1554409 History: Received May 01, 2002; Revised November 01, 2002; Online April 09, 2003
Copyright © 2003 by ASME
Your Session has timed out. Please sign back in to continue.

References

Markolf,  K. L., Slauterbeck,  J. R., Armstrong,  K. L., Shapiro,  M. S., and Finerman,  G. A., 1997, “A Biomechanical Study of Replacement of the Posterior Cruciate Ligament with a Graft. Part 1: Isometry, Pre-tension of the Graft, and Anterior-posterior Laxity,” J. Bone Jt. Surg., Am. Vol., 79(3), pp. 375–380.
Harner,  C. D., Janaushek,  M. A., Kanamori,  A., Yagi,  M., Vogrin,  T. M., and Woo,  S. L., 2000, “Biomechanical Analysis of a Double-bundle Posterior Cruciate Ligament Reconstruction,” Am. J. Sports Med., 28(2), pp. 144–151.
Harner,  C. D., Vogrin,  T. M., Hoher,  J., Ma,  C. B., and Woo,  S. L., 2000, “Biomechanical Analysis of a Posterior Cruciate Ligament Reconstruction. Deficiency of the Posterolateral Structures as a Cause of Graft Failure,” Am. J. Sports Med., 28(1), pp. 32–39.
Bergfeld,  J. A., McAllister,  D. R., Parker,  R. D., Valdevit,  A. D., and Kambic,  H. E., 2001, “A Biomechanical Comparison of Posterior Cruciate Ligament Reconstruction Techniques,” Am. J. Sports Med., 29(2), pp. 129–136.
Mannor,  D. A., Shearn,  J. T., Grood,  E. S., Noyes,  F. R., and Levy,  M. S., 2000, “Two-bundle Posterior Cruciate Ligament Reconstruction. An In Vitro Analysis of Graft Placement and Tension,” Am. J. Sports Med., 28(6), pp. 833–845.
Lipscomb,  A. B., Anderson,  A. F., Norwig,  E. D., Hovis,  W. D., and Brown,  D. L., 1993, “Isolated Posterior Cruciate Ligament Reconstruction, Long-term Results,” Am. J. Sports Med., 21(4), pp. 490–496.
Becker,  R., Ropke,  M., and Nebelung,  W., 1999, “Clinical Outcome of Arthroscopic Posterior Cruciate Ligament-plasty,” Unfallchirurg, 102(5), pp. 354–358.
Gill, T. J., DeFrate, L. E., Li, G., Carey, C. T., Zayontz, S. J., Glatt, V., and Zarins, B., The Effect of PCL Reconstruction on the Kinematics of the Knee Under Simulated Muscle Loads, in Orthopaedic Research Society 48th Annual Meeting (Dallas Texas, 2002).
Buckwalter,  J. A., and Lane,  N. E., 1997, “Athletics and Osteoarthritis,” Am. J. Sports Med., 25(6), pp. 873–881.
Cooper,  D. E., Deng,  X. H., Burstein,  A. L., and Warren,  R. F., 1993, “The Strength of the Central Third Patellar Tendon Graft. A Biomechanical Study,” Am. J. Sports Med., 21(6), pp. 818–823; discussion 823–814.
Blankevoort,  L., Kuiper,  J. H., Huiskes,  R., and Grootenboer,  H. J., 1991, “Articular Contact in a Three-dimensional Model of the Knee,” J. Biomech., 24(11), pp. 1019–1031.
Butler,  D. L., Kay,  M. D., and Stouffer,  D. C., 1986, “Comparison of Material Properties in Fascicle-bone Units From Human Patellar Tendon and Knee Ligaments,” J. Biomech., 19(6), pp. 425–432.
Harner,  C. D., Xerogeanes,  J. W., Livesay,  G. A., Carlin,  G. J., Smith,  B. A., Kusayama,  T., Kashiwaguchi,  S., and Woo,  S. L., 1995, “The Human Posterior Cruciate Ligament Complex: An Interdisciplinary Study. Ligament Morphology and Biomechanical Evaluation,” Am. J. Sports Med., 23(6), pp. 736–745.
Wren,  T. A., Yerby,  S. A., Beaupre,  G. S., and Carter,  D. R., 2001, “Mechanical Properties of the Human Achilles Tendon,” Clin. Biomech. (Los Angel. Calif.), 16(3), pp. 245–251.
Noyes,  F. R., Butler,  D. L., Grood,  E. S., Zernicke,  R. F., and Hefzy,  M. S., 1984, “Biomechanical Analysis of Human Ligament Grafts Used in Knee-ligament Repairs and Reconstructions,” J. Bone Jt. Surg., Am. Vol., 66(3), pp. 344–352.
Wismans,  J., Veldpaus,  F., Janssen,  J., Huson,  A., and Struben,  P., 1980, “A Three-dimensional Mathematical Model of the Knee-joint,” J. Biomech., 13(8), pp. 677–685.
Hamner,  D. L., Brown,  C. H., Steiner,  M. E., Hecker,  A. T., and Hayes,  W. C., 1999, “Hamstring Tendon Grafts for Reconstruction of the Anterior Cruciate Ligament: Biomechanical Evaluation of the Use of Multiple Strands and Tensioning Techniques,” J. Bone Jt. Surg., Am. Vol., 81(4), pp. 549–557.
Woo,  S. L., Hollis,  J. M., Adams,  D. J., Lyon,  R. M., and Takai,  S., 1991, “Tensile Properties of the Human Femur-anterior Cruciate Ligament-tibia Complex. The Effects of Specimen Age and Orientation,” Am. J. Sports Med., 19(3), pp. 217–225.
Beynnon,  B. D., Risberg,  M. A., Tjomsland,  O., Ekeland,  A., Fleming,  B. C., Peura,  G. D., and Johnson,  R. J., 1997, “Evaluation of Knee Joint Laxity and the Structural Properties of the Anterior Cruciate Ligament Graft in the Human. A Case Report,” Am. J. Sports Med., 25(2), pp. 203–206.
Li,  G., Lopez,  O., and Rubash,  H., 2001, “Variability of a Three-dimensional Finite Element Model Constructed Using Magnetic Resonance Images of a Knee for Joint Contact Stress Analysis,” J. Biomech. Eng., 123(4), pp. 341–346.
Brand,  J. C., Pienkowski,  D., Steenlage,  E., Hamilton,  D., Johnson,  D. L., and Caborn,  D. N., 2000, “Interference Screw Fixation Strength of a Quadrupled Hamstring Tendon Graft is Directly Related to Bone Mineral Density and Insertion Torque,” Am. J. Sports Med., 28(5), pp. 705–710.
Rowden,  N. J., Sher,  D., Rogers,  G. J., and Schindhelm,  K., 1997, “Anterior Cruciate Ligament Graft Fixation. Initial Comparison of Patellar Tendon and Semitendinosus Autografts in Young Fresh Cadavers,” Am. J. Sports Med., 25(4), pp. 472–478.
Harner,  C. D., Janaushek,  M. A., Ma,  C. B., Kanamori,  A., Vogrin,  T. M., and Woo,  S. L., 2000, “The Effect of Knee Flexion Angle and Application of an Anterior Tibial Load at the Time of Graft Fixation on the Biomechanics of a Posterior Cruciate Ligament-Reconstructed Knee,” Am. J. Sports Med., 28(4), pp. 460–465.
Clancy,  W. G., and Bisson,  L. J., 1999, “Double Tunnel Technique for Reconstruction of the Posterior Cruciate Ligament,” Oper Tech in Sports Med, 7(3), pp. 110–117.
Race,  A., and Amis,  A. A., 1998, “PCL Reconstruction. In Vitro Biomechanical Comparison of ‘Isometric’ Versus Single and Double-bundled ‘Anatomic’ Grafts,” J. Bone Joint Surg. Br., 80(1), pp. 173–179.
Ogata,  K., and McCarthy,  J. A., 1992, “Measurements of Length and Tension Patterns During Reconstruction of the Posterior Cruciate Ligament,” Am. J. Sports Med., 20(3), pp. 351–355.
Pearsall,  A. W., Pyevich,  M., Draganich,  L. F., Larkin,  J. J., and Reider,  B., 1996, “In vitro Study of Knee Stability After Posterior Cruciate Ligament Reconstruction,” Clin Orthop, 327, pp. 264–271.
Galloway,  M. T., Grood,  E. S., Mehalik,  J. N., Levy,  M., Saddler,  S. C., and Noyes,  F. R., 1996, “Posterior Cruciate Ligament Reconstruction. An In Vitro Study of Femoral and Tibial Graft Placement,” Am. J. Sports Med., 24(4), pp. 437–445.
Burns,  W. C., Draganich,  L. F., Pyevich,  M., and Reider,  B., 1995, “The Effect of Femoral Tunnel Position and Graft Tensioning Technique on Posterior Laxity of the Posterior Cruciate Ligament-reconstructed Knee,” Am. J. Sports Med., 23(4), pp. 424–430.
Ishibashi,  Y., Rudy,  T. W., Livesay,  G. A., Stone,  J. D., Fu,  F. H., and Woo,  S. L., 1997, “The Effect of Anterior Cruciate Ligament Graft Fixation Site at the Tibia on Knee Stability: Evaluation Using a Robotic Testing System,” Arthroscopy, 13(2), pp. 177–182.
Lewis,  J. L., Lew,  W. D., Engebretsen,  L., Hunter,  R. E., and Kowalczyk,  C., 1990, “Factors Affecting Graft Force in Surgical Reconstruction of the Anterior Cruciate Ligament,” J. Orthop. Res., 8(4), pp. 514–521.
Harner,  C. D., Hoher,  J., Vogrin,  T. M., Carlin,  G. J., and Woo,  S. L., 1998, “The Effects of a Popliteus Muscle Load on In Situ Forces in the Posterior Cruciate Ligament and on Knee Kinematics. A Human Cadaveric Study,” Am. J. Sports Med., 26(5), pp. 669–673.
Markolf,  K. L., Slauterbeck,  J. L., Armstrong,  K. L., Shapiro,  M. M., and Finerman,  G. A., 1996, “Effects of Combined Knee Loadings on Posterior Cruciate Ligament Force Generation,” J. Orthop. Res., 14(4), pp. 633–638.

Figures

Grahic Jump Location
Force-elongation of (a) the BPTB grafts and (b) Achilles tendon grafts. The effect of initial graft tension on force-elongation behavior of the grafts was illustrated.
Grahic Jump Location
Force-elongation of the PCL and Achilles tendon graft of three lengths: (a) the optimal length and the lengths with ±10% variation from the optimal length; (b) the length simulating mid-tunnel fixation and the length simulating tibial inlay fixation.
Grahic Jump Location
Force-elongation of the PCL and BPTB graft with four different lengths: the optimal graft length, the length simulating mid-tunnel fixation, the length simulating inlay fixation and a length 10% less than the optimal value.
Grahic Jump Location
Optimal ligament lengths of PCL reconstruction at different loading levels; (a) BPTB and (b) Achilles tendon grafts. Minimal normalized energy difference indicated an optimal graft length. Note that the optimal graft lengths of each graft at different loading levels are similar.
Grahic Jump Location
Force-elongation curves for a BPTB graft measured experimentally and calculated using Eq. (3).

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In