0
TECHNICAL PAPERS: Bone/Orthopedic

A Growth Mixture Theory for Cartilage With Application to Growth-Related Experiments on Cartilage Explants

[+] Author and Article Information
Stephen M. Klisch, Silvia S. Chen, Robert L. Sah

Department of Bioengineering, University of California at San Diego, La Jolla, CA

Anne Hoger

Department of Mechanical and Aerospace Engineering, University of California at San Diego, La Jolla, CA

J Biomech Eng 125(2), 169-179 (Apr 09, 2003) (11 pages) doi:10.1115/1.1560144 History: Received September 01, 2001; Revised December 01, 2002; Online April 09, 2003
Copyright © 2003 by ASME
Your Session has timed out. Please sign back in to continue.

References

Mow, V. C., and Ratcliffe, A., 1997, “Structure and Function of Articular Cartilage and Meniscus,” Basic Orthopaedic Biomechanics, ed., V. C. Mow, and W. C. Hayes, Raven Press, New York, pp. 113–178.
Maroudas, A., 1979, “Physico-chemical Properties of Articular Cartilage,” Adult Articular Cartilage, ed., M. A. R. Freeman, Pitman Medical, Tunbridge Wells, England, pp. 215–290.
Lai,  W. M., Hou,  J. S., and Mow,  V. C., 1991, “A Triphasic Theory for the Swelling and Deformation Behaviors of Articular Cartilage,” J. Biomech. Eng., 113, pp. 245–258.
Basser,  P. J., Schneiderman,  R., Bank,  R., Wachtel,  E., , 1998, “Mechanical Properties of the Collagen Network in Human Articular Cartilage as Measured by Osmotic Stress Technique,” Arch. Biochem. Biophys., 351, pp. 207–219.
Furuto,  D. K., and Miller,  E. J., 1987, “Isolation and Characterization of Collagens and Procollagens,” Methods Enzymol., 144, pp. 41–139.
Eyre,  D. R., Koob,  T. J., and Van Ness,  K. P., 1984, “Quantitation of Hydroxypyridinium Crosslinks in Collagen by High-performance Liquid Chromatography,” Anal. Biochem., 137, pp. 380–388.
Woo,  S. L.-Y., Akeson,  W. H., and Jemmott,  G. F., 1976, “Measurements of Nonhomogeneous Directional Mechanical Properties of Articular Cartilage in Tension,” J. Biomech., 9, pp. 785–791.
Venn,  M. F., and Maroudas,  A., 1977, “Chemical Composition and Swelling of Normal and Osteoarthritic Femoral Head Cartilage I: Chemical Composition,” Annals Rheum. Dis. 36, pp. 121–129.
Sah,  R. L., Trippel,  S. B., and Grodzinsky,  A. J., 1996, “Differential Effects of Serum, IGF-I, and FGF-2 on the Maintenance of Cartilage Physical Properties During Long-term Culture,” J. Orthop. Res., 14, pp. 44–52.
Treppo,  S., Koepp,  H., Quan,  E. C., Cole,  A. A., , 2000, “Comparison of Biomechanical and Biochemical Properties of Cartilage from Human Knee and Ankle Pairs,” J. Orthop. Res., 18(5), pp. 739–748.
Maroudas,  A., Bullough,  P., Swanson,  S. A. V., and Freeman,  M. A. R., 1968, “The Permeability of Articular Cartilage,” J. Bone Jt. Surg., 50-B, pp. 166–177.
Pal,  S., Tang,  L.-H., Choi,  H., Habermann,  E., , 1981, “Structural Changes During Development in Bovine Fetal Epiphyseal Cartilage,” Coll. Relat. Res., 1, pp. 151–176.
Strider,  W., Pal,  S., and Rosenberg,  L., 1975, “Comparison of Proteoglycans from Bovine Articular Cartilage,” Biochim. Biophys. Acta, 379, pp. 271–281.
Thonar,  E. J.-M., and Sweet,  M. B. E., 1981, “Maturation-related Changes in Proteoglycans of Fetal Articular Cartilage,” Arch. Biochem. Biophys., 208, pp. 535–547.
Chen, S. S., and Sah, R. L., 2001, “Contributions of Collagen Network and Fixed Charge to the Confined Compression Modulus of Articular Cartilage,” J. Biomech., (submitted).
Wong,  M., Ponticiello,  M., Kovanen,  V., and Jurvelin,  J. S., 2000, “Volumetric Changes of Articular Cartilage During Stress Relaxation in Unconfined Compression,” J. Biomech., 33(9), pp. 1049–1054.
Williamson,  A. K., Chen,  A. C., Masuda,  K., Thonar,  E. J., , 2001, “Evolution of the Biomechanical Properties of Articular Cartilage During Development: Function-composition Relationships,” Trans. Annu. Meet. — Orthop. Res. Soc., 26, pp. 427.
Dorland, W. A., 1981, Dorland’s illustrated Medical Dictionary, 26th ed., W. B. Saunders Company, Philadelphia.
Fung, Y. C., 1993, Biomechanics: Mechanical Properties of Living Tissues, 2nd ed., Springer-Verlag, New York p. 569.
Skalak,  R., Gasgupta,  G., Moss,  M., Otten,  E., , 1982, “Analytical Description of Growth,” J. Theor. Biol., 94, pp. 555–577.
Taber,  L., 1998, “A Model for Aortic Growth Based on Fluid Shear and Fiber Stresses,” ASME J. Biomech. Eng., 120, pp. 348–354.
Johnson,  B. E., and Hoger,  A., 1993, “The Dependence of the Elasticity Tensor on Residual Stress,” J. Elast., 33, pp. 145–165.
Merriam-Webster Collegiate Dictionary, 2001, 10th, http://www.m-w.com/dictionary.htm
Truesdell, C., and Toupin, R. A., 1960, “The Classical Field Theories,” Handbuch der Physik, ed., S. Flugge, Springer-Verlag, Berlin, III/I.
Muller,  I., 1968, “A Thermodynamic Theory of Mixtures of Fluids,” Arch. Ration. Mech. Anal., 28, pp. 1–39.
Green,  A. E., and Naghdi,  P. M., 1970, “The Flow of Fluid Through an Elastic Solid,” Acta Mech., 9, pp. 329–340.
Bowen,  R. M., 1980, “Incompressible Porous Medial Models by use of the Theory of Mixtures,” Int. J. Eng. Sci., 18, pp. 1129–1148.
Mow,  V. C., Kuei,  S. C., Lai,  W. M., and Armstrong,  C. G., 1980, “Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiment,” J. Biomech. Eng., 102, pp. 73–84.
Ateshian,  G. A., Warden,  W. H., Kim,  J. J., Grelsamer,  R. P., , 1997, “Finite Deformation Biphasic Material Properties of Bovine Articular Cartilage from Confined Compression Experiments,” J. Biomech., 30, pp. 1157–1164.
Klisch, S. M., and Hoger, A., 2002, “Volumetric Growth of Thermoelastic Materials and Mixtures,” Math. Mech. Solids, (in press).
Klisch, S. M., Sah, R. L., and Hoger, A., 2000, “A Growth Mixture Theory for Cartilage,” ASME Mechanics in Biology, BED-46 , pp. 229–242.
Rodriguez,  E. K., Hoger,  A., and McCulloch,  A. D., 1994, “Stress-dependent Finite Growth in Soft Elastic Tissues,” J. Biomech., 27(4), pp. 455–467.
Van Dyke, T. J., and Hoger, A., 2002, “Should the Growth Law be Defined on the Current or Initial Configuration?,” J. Theor. Biol., (submitted).
Klisch,  S. M., Van Dyke,  T., and Hoger,  A., 2001, “A Theory of Volumetric Growth for Compressible Elastic Materials,” Math. Mech. Solids, 6, pp. 551–575.
Epstein,  M., and Maugin,  G. A., 2000, “Thermomechanics of Volumetric Growth in Uniform Bodies,” Int. J. Plast., 16, pp. 951–978.
Humphrey,  J. D., and Rajagopal,  K. R., 2002, “A Constrained Mixture Model for Growth and Remodeling of Soft Tissues,” Mathematical Models and Methods in Applied Science, 12(3), pp. 407–430.
Johnson,  B. E., and Hoger,  A., 1995, “The Use of a Virtual Configuration in Formulating Constitutive Equations for Residually Stressed Elastic Materials,” J. Elast., 41, pp. 177–215.
Mills,  N., 1966, “Incompressible Mixtures of Newtonian Fluids,” Int. J. Eng. Sci., 4, pp. 97–112.
Frank,  E. H., and Grodzinsky,  A. J., 1987, “Cartilage Electromechanics-II. A Continuum Model of Cartilage Electrokinetics and Correlation with Experiments,” J. Biomech., 20, pp. 629–639.
Bachrach,  N. B., Mow,  V. C., and Guilak,  F., 1998, “Incompressibility of the Solid Matrix of Articular Cartilage Under High Hydrostatic Pressures,” J. Biomech., 31, pp. 445–451.
Sajdera,  S. W., and Hascall,  V. C., 1969, “Proteinpolysaccharide Complex from Bovine Nasal Cartilage. A Comparison of Low and High Shear Extraction Procedures,” J. Biol. Chem., 244, pp. 77–87.
Pottenger,  L. A., Webb,  J. E., and Lyon,  N. B., 1985, “Kinetics of Extraction of Proteoglycans from Human Cartilage,” Arthritis Rheum., 28, pp. 323–330.
Zhu,  W., Mow,  V. C., Koob,  T. J., and Eyre,  D. R., 1993, “Viscoelastic Shear Properties of Articular Cartilage and the Effects of Glycosidase Treatment,” J. Orthop. Res., 11, pp. 771–781.
Hoger,  A., 1999, “A Second Order Constitutive Theory for Hyperelastic Materials,” Int. J. Solids Struct., 36, pp. 847–868.
Truesdell, C., and Noll, W., 1965, “The Non-Linear Field Theories of Mechanics,” Handbuch der Physik, ed., S. Flugge, Springer-Verlag, Berlin, III/III.
Williamson, A. W., Chen, A. C., and Sah, R. L., 2001, “Compressive Properties and Structure-function Relationships of Developing Bovine Articular Cartilage,” J. Orthop. Res., (in press).
Atkin,  R. J., Chadwick,  P., and Steel,  T. R., 1967, “Uniqueness Theorems for Linearized Theories of Interacting Continua,” Mathematika, 14, pp. 27–42.
Soltz,  M. A., and Ateshian,  G. A., 2000, “A Conewise Linear Elasticity Mixture Model for the Analysis of Tension-compression Nonlinearity in Articular Cartilage,” ASME J. Biomech. Eng., 122, pp. 576–586.
Schinagl,  R. M., Gurskis,  D., Chen,  A. C., and Sah,  R. L., 1997, “Depth-dependent Confined Compression Modulus of Full-thickness Bovine Articular Cartilage,” J. Orthop. Res., 15, pp. 499–506.
Chen,  A. C., Bae,  W. C., Schinagl,  R. M., and Sah,  R. L., 2001, “Depth- and strain-dependent Mechanical and Electromechanical Properties of Full-thickness Bovine Articular Cartilage in Confined Compression,” J. Biomech., 34, pp. 1–12.
Chen, S. S., Falcovitz, Y. H., Schneiderman, R., Maroudas, A. et al., 2001, “Depth-dependent Compressive Properties of Normal Aged Human Femoral Head Articular Cartilage,” Osteoarthritis Cartilage, (in press).
Buschmann,  M. D., Maurer,  A. M., Berger,  E., and Hunziker,  E. B., 1996, “A Method of Quantitative Autoradiography for the Spatial Localization of Proteoglycan Synthesis Rates in Cartilage,” J. Histochem. Cytochem., 44, pp. 423–431.
Setton,  L. A., Toyama,  H., and Mow,  V. C., 1998, “Swelling and Curling Behaviors of Articular Cartilage,” ASME J. Biomech. Eng., 120, pp. 355–361.
Pauwels, F., 1976, Biomechanics of the Normal and Diseased Hip; Theoretical Foundations, Technique and Results of Treatment: An Atlas, ed., Springer-Verlag, New York, 276 pp.
Guilak, F., Sah, R. L., and Setton, L. A., 1997, “Physical Regulation of Cartilage Metabolism,” Basic Orthopaedic Biomechanics, ed., V. C. Mow, and W. C. Hayes, Raven Press, New York, pp. 179–207.
Trippel,  S. B., 1995, “Growth Factor Actions on Articular Cartilage,” J. Rheumatology , 43S, pp. 129–132.
Adkins,  J. E., 1958, “Dynamic Properties of Resilient Materials: Constitutive Equations,” Philos. Trans. R. Soc. London, 250A, pp. 519–541.

Figures

Grahic Jump Location
Schematic of the major components of the solid extracellular matrix of articular cartilage.
Grahic Jump Location
Physical and mathematical descriptions of cartilage growth for the special case when only proteoglycan molecules are deposited. See accompanying text for a full description.
Grahic Jump Location
Model results that describe the kinematics of growth for developing bovine cartilage specimens. Mean ±S.E.M. results for fetal (F,n=6), newborn (N,n=8), and adult (A,n=7) groups. (+) indicates a significant difference between either N or A groups and the F group, (++) indicates a significant difference between N and A groups (ANOVA, Tukey post-hoc, p<0.05).
Grahic Jump Location
CASE A model results that describe the evolution of the collagen material constants (λccc) for developing bovine cartilage specimens using the collagen stress equation (16). Mean ±S.E.M. results for fetal (F,n=6), newborn (N,n=8), and adult (A,n=7) groups. (+) indicates a significant difference between either N or A groups and the F group (ANOVA, Tukey post-hoc, p<0.05).
Grahic Jump Location
CASE A model results that describe the evolution of the collagen material constants (μ̄c,H̄Ac) for developing bovine cartilage specimens using the collagen stress equation (18). Mean ± S.E.M. results for fetal (F,n=6), newborn (N,n=8), and adult (A,n=7) groups. (+) indicates a significant difference between either N or A groups and the F group (ANOVA, Tukey post-hoc, p<0.05).
Grahic Jump Location
CASE A linear regression curves for the collagen material constants (μc,μ̄c) for the F/N/A groups, respectively. Both collagen material parameters were positively correlated (p<0.01) with collagen crosslink density γc (normalized by the average for the F group).
Grahic Jump Location
Linear regression curves for the predicted solid matrix material constants (Ḡs,k̄s,Ēs) for the F/N/A groups, respectively. All three solid matrix material parameters were positively correlated (p<0.01) with collagen crosslink density γc (normalized by the average for the F group).

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In