A Novel Experimental Method to Estimate Stress-Strain Behavior of Intact Coronary Arteries Using Intravascular Ultrasound (IVUS)

[+] Author and Article Information
Azita Tajaddini, D. Geoffrey Vince

Department of Biomedical Engineering/ND20, Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195

Deborah L. Kilpatrick

Guidant Corporation, Vascular Intervention Group, 3200 Lakeside Dr., Santa Clara, CA 95054

J Biomech Eng 125(1), 120-123 (Feb 14, 2003) (4 pages) doi:10.1115/1.1536929 History: Received November 01, 2001; Revised September 01, 2002; Online February 14, 2003
Copyright © 2003 by ASME
Your Session has timed out. Please sign back in to continue.


Anonymous, 2000, “NHLBI Morbidity and mortality chart book, 2000,” Available online only at: http://www.nhlbi.nih.gov/resources/docs/cht-book.htm, October 18, 2001.
Badimon, J. J., Gallo, R., Badimon, L., Chesoboro, J. H., and Fuster, V., 1998, “The Role of Atherosclerotic Plaque Disruption and Thrombosis in Acute Coronary Heart Disease,” In: Non-invasive imaging of atherosclerosis, Kluwer Academic Publishers, pp. 27–46.
Beattie,  D., Xu,  C., Vito,  R., Glagov,  S., and Whang,  M., 1998, “Mechanical Analysis of Heterogeneous, Atherosclerotic Human Aorta,” J. Biomech. Eng., 120, pp. 602–607.
Cheng,  G. C., Loree,  H. M., Kamm,  R. D., Fishbein,  M. C., and Lee,  R. T., 1993, “Distribution of Circumferential Stress in Ruptured and Stable Atherosclerotic Lesions a Structural Analysis with Histopathological Correlation,” Circulation, 87, pp. 1179–1187.
Fuster,  V., Stein,  B., Ambrose,  J. A., Badimon,  L., Badimon,  J. J., and Chesboro,  J. H., 1990, “Atherosclerotic Plaque Rupture and Thrombosis, Evolving Concepts,” Circulation, 82, pp. II47–II59.
Loree,  H. M., Kamm,  R. D., Stringfellow,  R. G., and Lee,  R. T., 1992, “Effects of Fibrous Cap Thickness on Peak Circumferential Stress in Model Atherosclerotic Vessels,” Circ. Res., 71(4), pp. 850–8.
Bergel,  D. H., 1961, “The Static Elastic Properties of the Arterial Wall,” J. Physiol. (London), 156, pp. 445–457.
Chandran, K. B., and Vonesh, M. J., 1998, “The Role of Mechanics in Vascular Biology,” Kluwer Academic Publishers, pp. 130–168.
Chuong,  C. J., and Fung,  Y. C., 1983, “Three-dimensional Stress Distribution in Arteries,” J. Biomech. Eng., 105, pp. 268–274.
Cox,  R. H., 1978, “Comparison of Carotid Artery Mechanics in the Rat, Rabbit, and Dog,” Am. J. Physiol., 234(3), pp. H280–H288.
Dobrin,  P. B., and Mrkvicka,  R., 1992, “Estimating the Elastic Modulus of Non-atherosclerotic Elastic Arteries,” J. Hypertens., 10(6), pp. S7–10.
Fung, Y. C., 1988, Biomechanics: Mechanical Properties of Living Tissues, Springer-Verlag, New York, pp. 433.
Gow,  S. G., and Hadfield,  C. D., 1979, “The Elasticity of Canine and Human Coronary Arteries with Reference to Postmortem Changes,” Circulation, 45, pp. 588–594.
Hayashi,  K., 1993, “Experimental Approaches on Measuring the Mechanical Properties and Constitutive Laws of Arterial Walls,” J. Biomech. Eng., 115, pp. 481–488.
Megerman,  J., Hasson,  J. E., Warnock,  D. F., L'italien,  G. J., and Abbott,  W. M., 1986, “Non Invasive Measurements of Nonlinear Arterial Elasticity,” Am. J. Physiol., 250, pp. H181–H188.
Zanchi,  A., Steriopulous,  N., Brunner,  H. R., and Hayoz,  D., 1998, “Differences in the Mechanical Properties of the Rat Carotid Artery In Vivo, In Situ, and In Vitro,” Hypertension, 32(1), pp. 180–5.
Coats,  W. D., Currier,  J. W., and Faxon,  D. P., 1997, “Remodeling and Restenosis: Insights from Animal Studies,” Semin Interv Cardiol., 2, pp. 153–158.
Gross,  D. R., Hunter,  J. F., and Allert,  J. A., 1981, “Pressure-diameter Relationships in the Coronary Artery of Intact, Awake Calves,” J. Biomech., 14(9), pp. 613–620.
Schwartz,  R., Edwards,  W. D., Bailey,  K. R., Camrud,  A. R., Jorgenson,  M. A., and Holmes,  D. R., 1994, “Differential Neointimal Response to Coronary Artery Injury in Pigs and Dogs Implications for Restenotic Models,” Arterioscler. Thromb., 14, pp. 395–400.
Mintz,  G., Nissen,  S., Anderson,  W., Bailey,  S., Erbel,  R., Fitzgerald,  P., Pinto,  F., Rosenfeld,  K., Siegel,  R., Tuzcu,  E., and Yock,  P., 2001, “American College of Cardiology Clinical Expert Consensus Document on Standards for Acquisition, Measurement, Reporting of Intravascular Ultrasound Studies,” J. Am. Coll. Cardiol., 37(5), pp. 1478–92.
Klingensmith,  J. D., Shekhar,  R., and Vince,  D. G., 2000, “Evaluation of Three-dimensional Segmentation Algorithms for the Identification of Luminal and Medial-adventitial Borders in Intravascular Ultrasound Images,” IEEE Trans. Med. Imaging, 19(10), pp. 996–1011.
Carmines,  D. V., McElhaney,  J. H., and Stack,  R., 1991, “A Piece-wise Non-linear Elastic Stress Expression of Human and Pig Coronary Arteries Tested In Vitro,” J. Biomech., 24(10), pp. 899–906.
Veress,  A., Vince,  D., Anderson,  P., Cornhill,  J., Herderick,  E., Klingensmith,  J., Kuban,  B., Greenberg,  N., and Thomas,  J., 2000, “Vascular Mechanics of the Coronary Artery,” Z. Kardiol., 89Suppl. 2, pp. 92–100.
Vonesh,  M. A., Cho,  C. H., Pinto,  J. V., Kane,  B. J., Lee,  D. S., Roth,  S. I., Chandran,  K. B., and McPherson,  D. D., 1997, “Regional Vascular Mechanical Properties by 3-D Intravsacular Ultrasound with Finite Element Analysis,” Am. J. Physiol., 272, pp. H425–H437.
Williams,  M. J. A., Stewart,  R. A. H., Low,  C. J. S., and Wilkins,  G., 1999, “Assessment of the Mechanical Properties of Coronary Arteries Using Intravascular Ultrasound: An In Vivo Study,” Int. J. Card. Imaging, 15, pp. 287–294.
Liu,  S. Q., and Fung,  Y. C., 1992, “Changes in the Rheological Properties of Blood Vessel Tissue Remodeling in the Course of Development of Diabetes,” Biorheology, 29(5–6), pp. 443–57.
Arbab-Zadeh,  A., DeMaria,  A. N., Penny,  W. F., Russo,  R. J., Kimura,  B. J., and Bhargava,  V., 1999, “Axial Movement of the Intravascular Ultrasound Probe During the Cardiac Cycle: Implications for Three-dimensional Reconstruction and Measurements of Coronary Dimensions,” Am. Heart J., 138(5), pp. 865–72.
Wahle,  A., Prause,  G., DeJong,  S., and Sonka,  M., 1999, “Geometrically correct 3-D Reconstruction of Intravascular Ultrasound Images by Fusion with Biplane Angiography—methods and Validation,” IEEE Trans. Med. Imaging, 18(8), pp. 686–699.
Klingensmith,  J., Vince,  D. G., Kuban,  B. D., Shekhar,  R., Tuzcu,  E. M., Nissen,  S. E., and Cornhill,  J. F., 2000, “Assessment of Coronary Compensatory Enlargement by Three-dimensional Intravascular Ultrasound,” Int. J. Card. Imaging, 16(2), pp. 87–98.
de Korte,  C. L., Pasterkamp,  G., van der Steen,  A. F., Woutman,  H. A., and Bom,  N., 2000, “Characterization of Plaque Components With Intravascular Ultrasound Elastography in Human Femoral and Coronary Arteries In Vitro,” Circulation, 102(6), pp. 617–23.


Grahic Jump Location
Segmented IVUS image from a diseased porcine LAD artery.
Grahic Jump Location
Ex-vivo experimental set-up.
Grahic Jump Location
Comparing ex-vivo and in-vivo behavior of control porcine LADs.
Grahic Jump Location
The ex-vivo response of control and injured porcine vessels. The response of a human coronary artery tested with the same method is shown for comparison.
Grahic Jump Location
Ex-vivo stress-strain behavior of control and injured porcine LADs throughout the vascular wall.



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In