Soulhat,
J., Buschmann,
M. D., and Shirazi-Adl,
A., 1999, “A Fibril-Network Reinforced Model of Cartilage in Unconfined Compression,” J. Biomech. Eng., 121, pp. 340–347.

Soltz,
M. A., and Ateshian,
G. A., 2000, “A Conewise Linear Elasticity Mixture Model for the Analysis of Tension-Compression Nonlinearity in Articular Cartilage,” J. Biomech. Eng., 122, pp. 576–586.

Mow,
V. C., Kuei,
S. C., Lai,
W. M., and Armstrong,
C. G., 1980, “Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiments,” J. Biomech. Eng., 102, pp. 73–84.

Mak,
A. F., 1986, “The Apparent Viscoelastic Behavior of Articular Cartilage—The Contributions from the Intrinsic Matrix Viscoelasticity and Interstitial Fluid Flows,” J. Biomech. Eng., 108, pp. 123–130.

DiSilvestro, M. R., Zhu, Q., and Suh, J.-K., 1999, “Biphasic Poroviscoelastic Theory Predicts the Strain Rate Dependent Viscoelastic Behavior of Articular Cartilage,” Proc. 1999 Bioeng. Conf., ASME BED-42 , pp. 105–106.

Holmes,
M. H., Lai,
W. M., and Mow,
V. C., 1985, “Singular Perturbation Analysis of the Nonlinear, Flow-Dependent Compressive Stress Relaxation Behavior of Articular Cartilage,” J. Biomech. Eng., 107, pp. 206–218.

Kwan,
M. K., Lai,
W. M., and Mow,
V. C., 1990, “A Finite Deformation Theory for Cartilage and Other Soft Hydrated Connective Tissues—I. Equilibrium Results,” J. Biomech., 23, pp. 145–155.

Holmes,
M. H., and Mow,
V. C., 1990, “The Nonlinear Characteristics of Soft Eels and Hydrated Connective Tissues in Ultrafiltration,” J. Biomech., 23, pp. 1145–1156.

Cohen,
B., Lai,
W. M., and Mow,
V. C., 1998, “A Transversely Isotropic Biphasic Model for Unconfined Compression of Growth Plate and Chondroepiphysis,” J. Biomech. Eng., 120, pp. 491–496.

Fung, Y.-C. B., 1972, “Stress-Strain History Relation of Soft Tissues in Simple Elongation,” In Biomechanics: Its Foundations and Objectives, Prentice Hall, Englewood Cliffs, 1972.

Frank,
E. H., and Grodzinsky,
A. J., 1987, “Cartilage Electromechanics—II. A Continuum Model of Cartilage Electrokinetics and Correlation with Experiments,” J. Biomech., 20, pp. 629–639.

Lai,
W. M., Hou,
J. S., and Mow,
V. C., 1991, “A Triphasic Theory for the Swelling and Deformation Behaviors of Articular Cartilage,” J. Biomech. Eng., 113, pp. 245–258.

Gu,
W. Y., Lai,
W. M., and Mow,
V. C., 1998, “A Mixture Theory for Charged Hydrated Soft Tissues Containing Multi-electrolytes: Passive Transport and Swelling Behaviors,” J. Biomech. Eng., 102, pp. 169–180.

Huyghe,
J. M., and Janssen,
J. D., 1997, “Quadriphasic Mechanics of Swelling Incompressible Porous Media,” Int. J. Eng. Sci., 35, pp. 793–802.

Farquhar,
T., Dawson,
P. R., and Torzilli,
P. A., 1990, “A Microstructural Model for the Anisotropic Drained Stiffness of Articular Cartilage,” J. Biomech. Eng., 112, pp. 414–425.

Wren,
T. A., and Carter,
D. R., 1998, “A Microstructural Model for the Tensile Constitutive and Failure Behavior of Soft Skeletal Connective Tissues,” J. Biomech. Eng., 120, pp. 55–61.

Bursac,
P. M., McGrath,
C. V., Eisenberg,
S. R., and Stamenovic,
D., 2000, “A Microstructural Model of Elastostatic Properties of Articular Cartilage in Confined Compression,” J. Biomech. Eng., 122, pp. 347–353.

Ateshian,
G. A., Warden,
W. H., Kim,
J. J., Grelsamer,
R. P., and Mow,
V. C., 1997, “Finite Deformation Biphasic Material Properties of Bovine Articular Cartilage from Confined Compression Experiments,” J. Biomech., 30, pp. 1157–1164.

Soltz,
M. A., and Ateshian,
G. A., 1998, “Experimental Verification and Theoretical Prediction of Cartilage Interstitial Fluid Pressurization At An Impermeable Contact Interface in Confined Compression,” J. Biomech., 31, pp. 927–994.

Soltz,
M. A., and Ateshian,
G. A., 2000, “Interstitial Fluid Pressurization During Confined Compression Cyclical Loading of Articular Cartilage,” Ann. Biomed. Eng., 28, pp. 150–159.

Bursac,
P. M., Obitz,
T. W., Eisenberg,
S. R., and Stamenovic,
D., 1999, “Confined and Unconfined Stress Relaxation of Cartilage: Appropriateness of a Transversely Isotropic Analysis,” J. Biomech., 32, pp. 1125–1130.

Setton,
L. A., Zhu,
W., and Mow,
V. C., 1993, “The Biphasic Poroviscoelastic Behavior of Articular Cartilage: Role of the Surface Zone in Governing the Compressive Behavior,” J. Biomech., 26, pp. 581–592.

Armstrong,
C. G., Lai,
W. M., and Mow,
V. C., 1984, “An Analysis of Unconfined Compression of Articular Cartilage,” J. Biomech., 106, pp. 165–173.

Brown,
T. D., and Singerman,
R. J., 1986, “Experimental Determination of the Linear Biphasic Constitutive Coefficients of Human Fetal Proximal Femoral Chondroepiphysis,” J. Biomech., 19, pp. 597–605.

Kim,
Y. J., Bonassar,
L. J., and Grodzinsky,
A. J., 1995, “The Role of Cartilage Streaming Potential, Fluid Flow and Pressure in the Stimulation of Chondrocyte Biosynthesis During Dynamic Compression,” J. Biomech., 28, pp. 1055–1066.

Buschmann,
M. D., Kim,
Y. J., Wong,
M., Frank,
E., Hunziker,
E. B., and Grodzinsky,
A. J., 1999, “Stimulation of Aggrecan Synthesis in Cartilage Explants By Cyclic Loading Is Localized To Regions of High Interstitial Fluid Flow,” Arch. Biochem. Biophys., 366, pp. 1–7.

Mak,
A. F., Lai,
W. M., and Mow,
V. C., 1987, “Biphasic Indentation of Articular Cartilage—I. Theoretical Analysis,” J. Biomech., 20, pp. 703–714.

Mow,
V. C., Gibbs,
M. C., Lai,
W. M., Zhu,
W., and Athanasiou,
K. A., 1989, “Biphasic Indentation of Articular Cartilage-Part II. A Numerical Algorithm and an Experimental Study,” J. Biomech., 22, pp. 853–861.

Athanasiou,
K. A., Rosenwasser,
M. P., Buckwalter,
J. A., Malinin,
T. I., and Mow,
V. C., 1991, “Interspecies Comparisons of in situ Intrinsic Mechanical Properties of Distal Femoral Cartilage,” J. Orthop. Res., 9, pp. 330–340.

Hale,
J. E., Rudert,
M. J., and Brown,
T. D., 1993, “Indentation Assessment of Biphasic Mechanical Property Deficits in Size-Dependent Osteochondral Defect Repair,” J. Biomech., 26, pp. 1319–1325.

Mow,
V. C., Good,
P. M., and Gardner,
T. R., 2000, “A New Method To Determine the Tensile Properties of Articular Cartilage Using the Indentation Test,” Trans. Annu. Meet. — Orthop. Res. Soc., 25, p. 103.

Suh,
J. K., and Bai,
S., 1997, “Biphasic Poroviscoelastic Behavior of Articular Cartilage in Creep Indentation Test,” Trans. Annu. Meet. — Orthop. Res. Soc., 22, p. 823.

Woo,
S. L.-Y., Simon,
B. R., Kuei,
S. C., and Akeson,
W. H., 1980, “Quasi-Linear Viscoelastic Properties of Normal Articular Cartilage,” J. Biomech. Eng., 102, pp. 85–90.

Huang,
C.-Y., Mow,
V. C., and Ateshian,
G. A., 2001, “The Role of Flow-independent Viscoelasticity In The Tensile Response of Biphasic Articular Cartilage,” J. Biomech. Eng., 123, pp. 410–417.

Curnier,
A., He,
Q.-C., and Zysset,
P., 1995, “Conewise Linear Elastic Materials,” J. Elast., 37, pp. 1–38.

Khalsa,
P. S., and Eisenberg,
S. R., 1997, “Compressive Behavior of Articular Cartilage Is Not Completely Explained by Proteoglycan Osmotic Pressure,” J. Biomech., 30, pp. 589–594.

Kvalseth,
T. O., 1985, “Cautionary Note About R^{2},” Am. Stat., 39, pp. 279–285.

Buschmann,
M. D., 1997, “Numerical Conversion of Transient to Harmonic Response Functions for Linear Viscoelastic Materials,” J. Biomech., 30, pp. 197–202.

Fortin,
M., Soulhat,
J., Shirazi-Adl,
A., Hunziker,
E. B., and Buschmann,
M. D., 2000, “Unconfined Compression of Articular Cartilage: Nonlinear Behavior and Comparison with a Fibril-Reinforced Biphasic Model,” J. Biomech. Eng., 122, pp. 189–195.

Mak,
A. F., 1986, “Unconfined Compression of Hydrated Viscoelastic Tissues: A Biphasic Poroviscoelastic Analysis,” Biorheology, 23, pp. 371–383.