TECHNICAL PAPERS: Fluids/Heat/Transport

A New Automated Method for the Quantification of Mitral Regurgitant Volume and Dynamic Regurgitant Orifice Area based on a Normalized Centerline Velocity Distribution using Color M-mode and Continuous Wave Doppler Imaging

[+] Author and Article Information
Dimitri Deserranno, Neil L. Greenberg, James D. Thomas, Mario J. Garcia

Cleveland Clinic Foundation, Department of Cardiology, Cardiovascular Imaging, 9500 Euclid Ave, Desk F15, Cleveland, OH 44195

J Biomech Eng 125(1), 62-69 (Feb 14, 2003) (8 pages) doi:10.1115/1.1531111 History: Received February 01, 2002; Revised September 01, 2002; Online February 14, 2003
Copyright © 2003 by ASME
Your Session has timed out. Please sign back in to continue.


Enriquez-Sarano,  M., Tajik,  A. J., Schaff,  H. V., Orszulak,  T. A., Bailey,  K. R., and Frye,  R. L., 1994, “Echocardiographic Prediction of Survival after Surgical Correction of Organic Mitral Regurgitation,” Circulation, 90, pp. 830–837.
Dujardin,  K. S., Enriquez-Sarano,  M., Bailey,  K. R., Nishimura,  R. A., Seward,  J. B., and Tajik,  A. J., 1997, “Grading of Mitral Regurgitation by Quantitative Doppler Echocardiography. Calibration by left Ventricular Angiography in Routine Clinical Practice,” Circulation, 96, pp. 3409–3415.
Thomas,  J. D., Liu,  C. M., Flachskampf,  F. A., O’Shea,  J. P., Davidoff,  R., and Weyman,  A. E., 1990, “Quantification of Jet Flow by Momentum Analysis. An In Vitro Color Doppler Flow Study,” Circulation, 81, pp. 247–259.
Zhang,  J., Shiota,  T., Shandas,  R., Deng,  Y. B., Weintraub,  R., Paik,  J., Liepmann,  D., and Sahn,  D. J., 1993, “Effects of Adjacent Surfaces on Different Shapes of Regurgitant Jet Sizes: An In Vitro Study Using Color Doppler Imaging and Laser-illuminated Dye Visualization,” J. Am. Coll. Cardiol., 22, pp. 1522–1528.
Maciel,  B. C., Moises,  V. A., Shandas,  R., Simpson,  I. A., Beltran,  M., Valdes-Cruz,  L., and Sahn,  D. J., 1991, “Effect of Pressure and Volume of the Receiving Chamber on the Spatial Distribution of Regurgitant Jets as Imaged by Color Doppler Flow Mapping. An In Vitro study,” Circulation, 83, pp. 605–613.
Zhou,  X., Jones,  M., Shiota,  T., Yamada,  I., Teien,  D., and Sahn,  D. J., 1997, “Vena Contracta Imaged by Doppler Color Flow Mapping Predicts the Severity of Eccentric Mitral Regurgitation Better Than Color Jet Area: A Chronic Animal Study,” J. Am. Coll. Cardiol., 30, pp. 1393–1398.
Buck,  T., Mucci,  R. A., Guerrerro,  J. L., Holmvang,  G., Handschumacher,  M. D., and Levine,  R. A., 2000, “The Power-velocity Integral at the Vena Contracta. A New Method for Direct Quantification of Regurgitant Volume Flow,” Circulation, 102, pp. 1053–1061.
Recusani,  F., Bargiggia,  G. S., Yoganathan,  A. P., Raisaro,  A., Valdes-Cruz,  L. M., Sung,  H. W., Bertucci,  C., Gallati,  M., Moises,  V. A., and Simpson,  I. A., 1991, “A New Method for Quantification of Regurgitant Flow Rate Using Color Doppler Flow Imaging of the Flow Convergence Region Proximal to a Discrete Orifice. An In Vitro study,” Circulation, 83, pp. 594–604.
Rodriguez,  L., Thomas,  J. D., Monterroso,  V., Weyman,  A. E., Harrigan,  P., Mueller,  L. N., and Levine,  R. A., 1993, “Validation of the Proximal Flow Convergence Method. Calculation of Orifice Area in Patients with Mitral Stenosis,” Circulation, 88, pp. 1157–1165.
Pu,  M., Griffin,  B. P., Vandervoort,  P. M., Leung,  D. Y., Cosgrove,  D. M., and Thomas,  J. D., 1995, “Intraoperative Validation of Mitral Inflow Determination by Transesophageal Echocardiography: Comparison of Single-plane, Biplane and Thermodilution Techniques,” J. Am. Coll. Cardiol., 26, pp. 1047–1053.
Cape,  E. G., Thomas,  J. D., Weyman,  A. E., Yoganathan,  A. P., and Levine,  R. A., 1995, “Three-dimensional Surface Geometry Correction is Required for Calculating Flow by the Proximal Isovelocity Surface Technique,” J. Am. Soc. Echocardiogr, 8, pp. 585–594.
Nozaki,  S., Shandas,  R., and DeMaria,  A. N., 1997, “Requirement for Accurate Measurement of Regurgitant Stroke Volume by Combined Continuous-wave Doppler and Color Doppler Flow Convergence Method,” Am. Heart J., 133, pp. 19–28.
Shandas,  R., Gharib,  M., and Shan,  D. J., 1995, “Nature of Flow Acceleration into a Finite-sized Orifice: Steady and Pulsatile Flow Studies on the Flow Convergence Region Using Simultaneous Ultrasound Doppler Flow Imaging and Laser Doppler Velocimetry,” J. Am. Coll. Cardiol., 25, pp. 1199–1212.
Deng,  Y., Shiota,  T., Shandas,  R., Zhang,  J., and Sahn,  D. J., 1993, “Determination of the Most Appropiate Velocity Threshold for Applying Hemispheric Flow Convergence Equations to Calculate Flow Rate: Selected According to the Transorifice Pressure Gradient. Digital Computer Analysis of Doppler Color Flow Convergence Region,” Circulation, 88, pp. 1699–1708.
Schwammenthal,  E., Chen,  C., Benning,  F., Block,  M., Breithardt,  G., and Levine,  R. A., 1994, “Dynamics of Mitral Regurgitant Flow and Orifice Area. Physiologic Application of the Proximal Flow Convergence Method: Clinical Data and Experimental Testing,” Circulation, 90, pp. 307–322.
Utsunomiya,  T., Ogawa,  T., Doshi,  R., Patel,  D., Quan,  M., Henry,  W. L., and Gardin,  J. M., 1991, “Doppler Color Flow “Proximal Isovelocity Surface Area” Method for Estimating Volume Flow Rate: Effects of Orifice Shape and Machine Factors,” J. Am. Coll. Cardiol., 17(5), pp. 1103–11.
Anayiotos,  A. S., Perry,  G. J., Myers,  J. G., Green,  D. W., Fan,  P. H., and Nanda,  N. C., 1995, “A Numerical and Experimental Investigation of the Flow Acceleration Region Proximal to an Orifice,” Ultrasound Med. Biol., 21(4), pp. 501–516.


Grahic Jump Location
(a) Velocity contour plot and (b) centerline velocity profile for regurgitation through a 5 mm diameter orifice with a 180 degrees constraint and a peak velocity of 3.04 m/s.
Grahic Jump Location
Sample set of data (6 out of 132 profiles) obtained from the CFD model for α=100–240 degrees,d=2–9 mm,vp=3–8 m/sa) before and b) after normalization.
Grahic Jump Location
Error in the estimated diameter by the NVD model for a misalignment in the Doppler scanline for α=120–220 degrees.
Grahic Jump Location
Error made by PISA in the estimation of regurgitant flow (Q) as a function of the radius r normalized by the orifice diameter d assuming the correct value of the radius r (solid line), 1 mm overestimation of the radius (gray line) and 1 mm underestimation of the radius (dashed line).
Grahic Jump Location
Computational grid for a 5 mm orifice with a wall constraint of 180 degrees (1: mass flow inlet, 2: outflow, 3: pressure inlet, 4: symmetry axis, 5: orifice, I: proximal chamber, II: leaflet wall, III: distal chamber, α: wall constraint).
Grahic Jump Location
(a) A typical color M-mode and (b) continuous wave Doppler image for an orifice diameter of 7.7 mm and peak pressure drop of 123 mmHg.
Grahic Jump Location
Sample of the NVD model outputs for (a) the diameter and (b) the regurgitant flow rate by the Labview program for a 7.7 mm orifice (marked by gray line) with a regurgitant volume of 58.9 ml/beat and a peak pressure drop of 123 mmHg.
Grahic Jump Location
(a) Estimated diameter and (b) regurgitant volume from the NVD model compared to the actual diameter of the phantom and the regurgitant volume by flow probe measurement.
Grahic Jump Location
(a) Estimated regurgitant orifice area and (b) volume by the NVD model compared to the PISA method.



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In