0
TECHNICAL PAPERS: Fluids/Heat/Transport

Experimental Flow Studies in Exact-Replica Phantoms of Atherosclerotic Carotid Bifurcations Under Steady Input Conditions

[+] Author and Article Information
J. Bale-Glickman, Ö. Savaş

Department of Mechanical Engineering, University of California at Berkeley, Berkeley, CA 94720-1740

K. Selby, D. Saloner

Department of Radiology, University of California at San Francisco, San Francisco, CA 94143-0628

J Biomech Eng 125(1), 38-48 (Feb 14, 2003) (11 pages) doi:10.1115/1.1537734 History: Received July 01, 2001; Revised September 01, 2002; Online February 14, 2003
Copyright © 2003 by ASME
Your Session has timed out. Please sign back in to continue.

References

Jorgensen,  L., and Torvik,  A., 1969, “Ischaemic Cerebrovascular Diseases in an Autopsy Series,” J. Neurol. Sci., 9, pp. 285–320.
Nicholls,  S., Kohler,  T., Bergelin,  R., Primozich,  J., Lawrence,  R., and Strandness,  D., 1986, “Carotid Artery Occlusion,” J. Vasc. Surg., 4, pp. 479–485.
Timsit,  S. G., Sacco,  R. L., Mohr,  J. P., Foulkes,  M. A., Tatemichi,  T. K., Wolf,  P. A., Price,  T. R., and Hier,  D. B., 1992, “Early Clinical Differentiation of Cerebral Infarction from Severe Atherosclerotic Stenosis and Cardioembolism,” Stroke, 23, pp. 486–491.
Fuster,  V., Stein,  B., Ambrose,  J. A., Badimon,  L., and Chesebro,  J. H., 1990, “Atherosclerotic Plaque Rupture and Thrombosis. Evolving Concepts,” Circulation, 82, pp. 1147–1159.
, 1995, “Endarterectomy for Asymptotic Carotid Artery Stenosis,” Executive Committee for the Asymptotic Carotid Atherosclerosis Study. JAMA, J. Am. Med. Assoc., 273, pp. 1421–1428.
, 1991, “MRC European Carotid Surgery Trial: Interim Results for Symptomatic Patients with Severe (70–99%) or with Mild (0–29%) Carotid Stenosis,” Group ECSTC, Lancet, 337, pp. 1235–1243.
Nerem, R. M., 1995, “Atherosclerosis and the Role of Wall Shear Stress,” Flow-Dependent Regulation of Vascular Function, Bevan, J. A., Kaley, G., and Rubanyi, G. M., eds., Oxford University Press, New York, NY, pp. 300–319.
Libby,  P., 1995, “Lesion versus Lumen,” Nat. Med., 1, pp. 17–18.
Gimbrone,  M. A., Resnick,  N., Nagel,  T., Khachigian,  L. M., Collins,  T., and Topper,  J. N., 1997, “Hemodynamics, Endothelial Gene Expression, and Atherogenesis,” Ann. N.Y. Acad. Sci., 811, pp. 1–11.
Berger,  S. A., and Jou,  L.-D., 2000, “Flows in Stenotic Vessels,” Annu. Rev. Fluid Mech., 32, pp. 347–382.
Stroud,  J. S., Berger,  S. A., and Saloner,  D., 2000, “Influence of Stenosis Morphology on Flow Through Severely Stenotic Vessels: Implications for Plaque Rapture,” J. Biomech., 33, pp. 443–455.
Caro,  C. G., Fitzgerald,  J. M., and Schroter,  R. C., 1971, “Atheroma and Arterial Wall Shear Observations, Correlation and Proposal of a Shear Dependent Mass Transfer Mechanism for Atherogenesis,” Proc. R. Soc. London, 17, pp. 109–159.
Glagov, S., Zarin, C. K., Giddens, D. P., and Ku, D. N., 1989, “Mechanical Factors in the Pathogenesis, Localization and Evolution of Atherosclerotic Plaques,” Diseases of the Artery Wall, Camillen, J. P., Berny, C. L., Fiessinger, J. N., and Bariety, J., eds., Springer-Verlag, New York, NY, pp. 217–239.
Beach,  K. W., Hatsukami,  T., Detmer,  P. R., Primozich,  J. F., Ferguson,  M. S., Gordon,  D., Alpers,  C. E., Burns,  D. H., Thackray,  B. D., and Strandness,  D. E., 1993, “Carotid Artery Intraplaque Hemorrhage and Stenotic Velocity,” Stroke, 24, pp. 314–319.
Consigny,  P., 1995, “Pathogenesis of Atherosclerosis,” Am. J. Roentgenol., 164, pp. 553–558.
Slack,  S. M., Cui,  Y., and Turittto,  V. T., 1993, “The Effects of Flow on Blood Coagulation and Thrombosis,” Thromb Haemost, 70, pp. 129–134.
Affeld,  K., Reininger,  A. J., Gadischke,  J., Grunert,  K., Schmidt,  S., and Thiele,  F., 1995, “Fluid Mechanics of the Stagnation Point Flow Chamber and its Platelet Deposition,” Artif. Organs, 19, pp. 597–602.
Bharadvaj,  B. K., Mabon,  R. F., and Giddens,  D. P., 1982, “Steady Flow in a Model of the Human Harotid Bifurcation. Part I—Flow Visualization; Part II—Laser-Doppler Anemometer Measurements,” J. Biomech., 15, pp. 349–378.
Motomiya,  M., and Karino,  T., 1984, “Flow Patterns in the Human Carotid Artery Bifurcation,” Stroke, 15, pp. 50–56.
Kerber,  C. W., and Heilman,  C. B., 1992, “Flow Dynamics in the Human Carotid Artery: I. Preliminary Observations Using a Transparent Elastic Model,” AJNR Am. J. Neuroradiol., 13, pp. 173–180.
Ku,  D. N., and Giddens,  D. P., 1983, “Pulsatile Flow in a Model Carotid Bifurcation,” Arteriosclerosis (Dallas), 3, pp. 31–39.
LoGerfo,  F. W., Nowak,  M. D., and Quist,  W. C., 1985, “Structural Details of Boundary Layer Separation in a Model Human Carotid Bifurcation Under Steady and Pulsatile Flow Conditions,” J. Vasc. Surg., 2, pp. 263–269.
Rindt,  C. C., and Steenhoven,  A. A., 1996, “Unsteady Flow in a Rigid 3-D Model of the Carotid Artery Bifurcation,” J. Biomech. Eng., 118, pp. 90–96.
Ku,  D. N., and Giddens,  D. P., 1987, “Laser Doppler Anemometer Measurements of Pulsatile Flow in a Model Carotid Bifurcation,” J. Biomech., 20, pp. 407–421.
Samuel,  K. C., 1956, “Atherosclerosis and Occlusion of the Internal Carotid Artery,” J. Pathol. Bacteriol., 71, pp. 391–401.
Solberg,  L. A., and Eggen,  D. A., 1971, “Localization and Sequence of Development of Atherosclerotic Lesions in the Carotid and Vertebral Arteries,” Circulation, 43, pp. 711–724.
Polak,  J. F., O’Leary,  D. H., Quist,  W. C., Creager,  M. A., and LoGerfo,  F. W., 1990, “Pulsed and Color Doppler Analysis of Normal Carotid Bifurcation Flow Dynamics using an In-vitro Model,” Angiology, 41, pp. 241–247.
Palmen,  D. E., van de Vosse,  F. N., Janssen,  J. D., and van Dongen,  M. E., 1994, “Analysis of the Flow in Stenosed Carotid Artery Bifurcation Models—Hydrogen-Bubble Visualization,” J. Biomech., 27, pp. 581–590.
Gijsen,  F. J. H., Palmen,  D. E. M., van der Beek,  M. H. E., van de Vosse,  F. N., van Dongen,  M. E. H., and Janssen,  J. D., 1996, “Analysis of the Axial Flow Field in Stenosed Carotid Artery Bifurcation Models—LDA Experiments,” J. Biomech., 29, pp. 1483–1489.
Pan,  X., Saloner,  D., Reilly,  L. M., Bowersox,  J. C., Murray,  S. P., Anderson,  C. M., Gooding,  G. A. W., and Rapp,  J. H., 1995, “Assessment of Carotid Artery Stenosis by Ultrasonography, Conventional Angiography, and Magnetic Resonance Angiography: Correlation with Ex-vivo Measurement of the Plaque Stenosis,” J. Vasc. Surg., 21(1), pp. 82–89.
Adrian,  R., 1991, “Particle-Imaging Techniques for Experimental Fluid Mechanics,” Annu. Rev. Fluid Mech., 23, pp. 261–304.
Sholl, M., and Savaş, Ö., 1997, “A Fast Lagrangian PIV Method for Study of General High-Gradient Flows,” AIAA Paper No. 97-0493. AIAA, Reston, VA.
Tsuei,  L., and Savaş,  Ö., 2000, “Treatment of Interfaces in Particle Image Velocimetry,” Experiments in Fluids, 29, pp. 203–214.
Stroud,  J. S., Berger,  S. A., and Saloner,  D., 2002, “Numerical Analysis of Flow Through a Severely Stenotic Carotid Artery Bifurcation,” J. Biomech. Eng., 124, pp. 9–20.
Samijo,  S. K., Willigers,  J. M., Brands,  P. J., Barkhuysen,  R., Reneman,  R. S., Kitslaar,  P. J. E. H. M., and Hoeks,  A. P. G., 1997, “Reproducibility of Shear Rate and Shear Stress Assessment by Means of Ultrasound in the Common Carotid Artery of Young Human Males and Females,” Ultrasound Med. Biol., 23(4), pp. 583–590.

Figures

Grahic Jump Location
Magnetic resonance angiograms of (a) a healthy, and (b) an atherosclerotic carotid bifurcation. CCA-common carotid artery; ECA-external carotid artery; ICA-internal carotid artery
Grahic Jump Location
Histological cross-section through an atherosclerotic carotid artery
Grahic Jump Location
Excised atherosclerotic plaque
Grahic Jump Location
Flow phantoms and the details at their flow dividers. (a) Phantom 1, and (b) Phantom 2
Grahic Jump Location
Flow setup. The flow circuit, including the phantom, is stationary. All of the optical components move vertically during data acquisition so that the camera stays focused on the laser sheet as it scans the flow phantom.
Grahic Jump Location
Sample flow illustrating data analysis. (a) Extended PIV image. (b) Streaklines from CW laser flow visualization experiments. (c) Velocity vector field. (d) Vorticity. (e) Streamlines on speed field; an alternate presentation of the velocity field.
Grahic Jump Location
Input speed distributions (grayscale and profile at the dashed line) in CCA at Re=185. (a) Phantom 1, y-step=012 mm, and (b) Phantom 2, y-step=017 mm.
Grahic Jump Location
Phantom 1: ReD=13. (a) Streaklines, (b) Vorticity field, (c), (d), (e) Streamlines at three adjacent planes of the phantom. The xy-steps are each 0.12 mm.
Grahic Jump Location
Phantom 1: ReD=185. (a) Streaklines, (b) Vorticity field, (c), (d), (e) Streamlines at three adjacent planes of the phantom. The xy-steps are each 0.12 mm.
Grahic Jump Location
Phantom 1: ReD=410. (a) Streaklines, (b) Vorticity field, (c), (d), (e) Streamlines at three adjacent planes of the phantom. The xy-steps are each 0.12 mm.
Grahic Jump Location
Phantom 2: ReD=13. (a) Streaklines, (b) Vorticity field, (c), (d), (e) Streamlines at three adjacent planes of the phantom. The xy-steps are each 0.17 mm.
Grahic Jump Location
Phantom 2: ReD=185. (a) Streaklines, (b) Vorticity field, (c), (d), (e) Streamlines at three adjacent planes of the phantom. The xy-steps are each 0.17 mm.
Grahic Jump Location
Phantom 2: ReD=410. (a) Streaklines, (b) Vorticity field, (c), (d), (e) Streamlines at three adjacent planes of the phantom. The xy-steps are each 0.17 mm.
Grahic Jump Location
Streakline detail near vessel wall, ReD=185. (a) Phantom 1, and (b) Phantom 2.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In