Simulation of Progressive Deformities in Adolescent Idiopathic Scoliosis Using a Biomechanical Model Integrating Vertebral Growth Modulation

[+] Author and Article Information
I. Villemure

Research Center, Sainte-Justine Hospital 3175, Cote Sainte-Catherine Road Montreal (Quebec) H3T 1C5 CanadaUniversity of Montreal Biomedical Engineering Institute P.O. Box 6128, Station “Centre-ville” Montreal (Quebec) H3C 3J7 Canada

C. É. Aubina, J. Dansereau

Research Center, Sainte-Justine Hospital 3175, Cote Sainte-Catherine Road Montreal (Quebec) H3T 1C5 CanadaEcole Polytechnique de Montreal Mechanical Engineering Department P.O. Box 6079, Station “Centre-ville” Montreal (Quebec) H3C 3A7 Canada

H. Labelle

Research Center, Sainte-Justine Hospital 3175, Cote Sainte-Catherine Road Montreal (Quebec) H3T 1C5 CanadaUniversity of Montreal Biomedical Engineering Institute P.O. Box 6128, Station “Centre-ville” Montreal (Quebec) H3C 3J7 Canada

J Biomech Eng 124(6), 784-790 (Dec 27, 2002) (7 pages) doi:10.1115/1.1516198 History: Received August 01, 2000; Revised June 01, 2002; Online December 27, 2002
Copyright © 2002 by ASME
Your Session has timed out. Please sign back in to continue.


Gooding,  C. A., and Neuhauser,  E. B. D., 1965, “Growth and Development of the Vertebral Body in the Presence and Absence of Normal Stress,” Am. J. Roentgenol., Radium Ther. Nucl. Med., 93, pp. 388–394.
McCall,  I. W., Galvin,  E., O’Brien,  J. P., and Park,  W. M., 1981, “Alterations in Vertebral Growth Following Plaster Immobilization,” Acta Orthop. Scand., 52, pp. 327–330.
Stokes,  I. A. F., Aronsson,  D. D., and Urban,  J. P. G., 1994, “Biomechanical Factors Influencing Progression of Angular Skeletal Deformities During Growth,” European Journal of Musculoskeletal Research,3, pp. 51–60.
Arkin,  A. M., and Katz,  J. F., 1956, “The Effects of Pressure on Epiphyseal Growth,” J. Bone Jt. Surg., 38A, pp. 1056–1076.
Moreland,  M. S., 1980, “Morphological Effects of Torsion Applied to Growing Bone,” J. Bone Jt. Surg., 62B, pp. 230–237.
Perdriolle,  R., Becchetti,  S., Vidal,  J., and Lopez,  P., 1993, “Mechanical Process and Growth Cartilages—Essential Factors in the Progression of Scoliosis,” Spine, 18, pp. 343–349.
Aubin,  C. É., Dansereau,  J., Petit,  Y., Parent,  F., De Guise,  J. A., and Labelle,  H., 1998, “Three-Dimensional Measurement of Wedged Scoliotic Vertebrae and Intervetebral Disks,” Eur. Spine J., 7, pp. 59–65.
Graf, H., and Mouilleseaux, B., 1990, Analyze Tridimensionnelle de la Scoliose, Safir, France.
Burwell,  R. G., Cole,  A. A., Cook,  T. A., Grivas,  T. B., Kiel,  A. W., Moulton,  A., Thirlwall,  A. S., Upadhyay,  S. S., Webb,  J. K., Wernyss-Holden,  S. A., Whitwell,  D. J., Wojcik,  A. S., and Wythers,  D. J., 1992, “Pathogenesis of Idiopathic Scoliosis: The Nottingham Concept,” Acta Orthop. Belg., 58, pp. 33–58.
Stokes,  I. A. F., and Laible,  J. P., 1990, “Three-Dimensional Osseo-Ligamentous Models of the Thorax Representing Initiation of Scoliosis by Asymmetric Growth,” J. Biomech., 23, pp. 589–595.
Azegami,  H., Murachi,  S., Kitoh,  J., Ishida,  Y., Kawakami,  N., and Makino,  M., 1999, “Etiology of Idiopathic Scoliosis,” Clin. Orthop. Relat. Res., 357, pp. 229–236.
Tadano, S., Kanayama, M., and Ukai, T., 1995, “Computer-Simulation of Idiopathic Scoliosis Initiated by Asymmetric Growth Force in a Vertebral Body,” Third International Conference on Computer Simulations in Biomedicine, England, pp. 369–376.
Hart,  R. T., Davy,  D. T., and Heiple,  K. G., 1984, “A Computational Method for Stress Analysis of Adaptive Elastic Materials with a View Toward Applications in Strain-Induced Bone Remodeling,” J. Biomech. Eng., 106, pp. 342–350.
Goel,  V. K., Ramirez,  S. A., Kong,  W., and Gilbertson,  L. G., 1995, “Cancellous Bone Young’s Modulus Variation within the Vertebral Body of a Ligamentous Lumbar Spine—Application of Bone Adaptive Remodeling Concepts,” J. Biomech. Eng., 117, pp. 266–271.
Vital,  J. M., Beguiristain,  J. L., Algara,  C., Villas,  C., Lavignolle,  B., Grenier,  N., and Senegas,  J., 1989, “The Neurocentral Vertebral Cartilage: Anatomy, Physiology and Physiopathology,” Surg. Radiol. Anat., 11, pp. 323–328.
Yamazaki,  A., Mason,  D. E., and Caro,  P. A., 1998, “Age of Closure of the Neurocentral Cartilage in the Thoracic Spine,” J. Pediatr. Orthop., 18, pp. 168–172.
Weinstein S. L., 1994, The Pediatric Spine, Principles and Practice, Raven Press, New York, pp. 421–556.
Dansereau J., Beauchamp A., De Guise J. A., and Labelle H., 1990, “Three-Dimensional Reconstruction of the Spine and Rib Cage from Stereoradiographic and Imaging Techniques,” Proc. 16th Conference of the Canadian Society of Mechanical Engineering, 2 , pp. 61–64.
Gignac,  D., Aubin,  C. É., Dansereau,  J., and Labelle,  H., 2000, “Optimization Method for 3D Bracing Correction of Scoliosis using a Finite Element Model,” Eur. Spine J., 9, pp. 185–190.
Aubin,  C. É., Descrimes,  J. L., Dansereau,  J., Skall,  W., Lavaste,  F., and Labelle,  H., 1995, “Geometrical Modeling of the Spine and Thorax for Biomechanical Analysis of Scoliotic Deformities using Finite Element Method,” [in French], Ann. Chir., 49, pp. 749–761.
Descrimes,  J. L., Aubin,  C. É., Skalli,  W., Zeller,  R., Dansereau,  J., and Lavaste,  F., 1995, “Introduction des Facettes Articulaires dans une Modélisation par Éléments Finis de la Colonne Vertébrale et du Thorax Scoliotique: Aspects Mécaniques,” Rachis,7, pp. 301–314.
Dimeglio A., and Bonnel F., 1990, Le rachis en Croissance, Springer-Verlag, Paris.
Taylor,  J. R., 1975, “Growth of Human Intervetebral Discs and Vertebral Bodies,” J. Anat., 120, pp. 49–68.
Frost,  H. M., 1990, “Skeletal Structural Adaptations to Mechanical Usage (SATMU): 3. The Hyaline Cartilage Modeling Problem,” Anat. Rec., 226, pp. 423–432.
Wilson-Macdonald,  J., Houghton,  G. R., Bradley,  J., and Morscher,  E., 1990, “The Relationship between Periostal Division and Compression or Distraction of the Growth Plate,” J. Bone Jt. Surg., 72B, pp. 303–308.
Schultz,  A., Andersson,  G., Ortengren,  R., Haderspeck,  K., and Nachemson,  A., 1982, “Loads on the Lumbar Spine—Validation of a Biomechanical Analysis by Measurements of Intradiscal Pressures and Myoelectric Signals,” J. Bone Jt. Surg., 64A, pp. 713–720.
Nachemson,  A., 1964, “The Load on Lumbar Disks in Different Positions of the Body,” Clin. Orthop. Relat. Res., 45, pp. 107–122.
Labelle,  H., Dansereau,  J., Bellefleur,  C., and Poitras,  B., 1996, “Three-Dimensional Effect of the Boston Brace on the Thoracic Spine and Rib Cage,” Spine, 21, pp. 59–64.
Villeumure,  I., Aubin,  C. É., Dansereau,  J., Petit,  Y., and Labelle,  H., 1999, “A Correlation Study between Spinal Curvatures and Vertebral and Interertebral Deformaties in Idiopathic Scoliosis,” [in French], Ann. Chir., 53, pp. 798–807.
Villemure,  I., Aubin,  C. É., Grimard,  G., Dansereau,  J., and Labelle,  H., 2001, “Progression of Vertebral and Spinal Three-Dimensional Deformities in Adolescent Idiopathic Scoliosis: A Longitudinal Study,” Spine, 26, pp. 2244–2250.
Deacon,  P., Flood,  B. M., and Dickson,  R. A., 1984, “Idiopathic Scoliosis in Three Dimensions. A Radiographic and Morphometric Analysis,” J. Bone Jt. Surg., 66B, pp. 509–512.
Patwardhan,  A. G., Havey,  R. M., Meade,  K. P., Lee,  B., and Dunlap,  B., 1999, “A Follower Load Increases the Load-Carrying Capacity of the Lumbar Spine in Compression,” Spine, 24, pp. 1003–1009.


Grahic Jump Location
Finite element model: (a) thoracic and lumbar spine (global axis system: X (anterior), Y (left lateral) and Z (cephalic)); (b) vertebral motion segment (bone local axis system: x (perpendicular to growth-plates) and y, z (parallel to growth-plates))
Grahic Jump Location
Biomechanical stepwise incremental procedure separately simulating growth, external loading of the spine and corresponding growth modulation (σ=0: reset of the model stress and strain states)
Grahic Jump Location
Initial configuration and configurations at the 6th, 12th, 18th, and 24th in frontal, lateral and transverse spinal views: (a) Simulation 1 (βx=0.8 MPa−1 , βyz=0);(b) Simulation 2 (βx=0.8 MPa−1 , βyz=0.2 MPa−1 )
Grahic Jump Location
Monthly evolution of regional scoliotic descriptors Cobb and kyphosis
Grahic Jump Location
Monthly evolution of local scoliotic descriptors wedging angle ω and axial rotation θz




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In