0
TECHNICAL PAPERS

In Vitro Measurement of the Restraining Role of the Anterior Cruciate Ligament During Walking and Stair Ascent

[+] Author and Article Information
A. M. Ahmed, C. McLean

Department of Mechanical Engineering, McGill University, Montreal, Quebec, Canada

J Biomech Eng 124(6), 768-779 (Dec 27, 2002) (12 pages) doi:10.1115/1.1504100 History: Received July 01, 1999; Revised May 01, 2002; Online December 27, 2002
Copyright © 2002 by ASME
Your Session has timed out. Please sign back in to continue.

References

Fukubayashi,  B., Torzilli,  P. A., Sherman,  M. F., and Warren,  R. F., 1982, “An In Vitro Biomechanical Evaluation of Anterior-Posterior Motion of the Knee,” J. Bone Jt. Surg., 64-A, pp. 258–264.
Hseih,  H., and Walker,  P. S., 1976, “Stabilizing Mechanisms of the Loaded and Unloaded Knee Joint,” J. Bone Jt. Surg., 58-A, pp. 87–93.
Markolf,  K. L., Mensch,  J. S., and Amstutz,  H. C., 1976, “Stiffness and Laxity of the Knee-the Contribution of the Supporting Structures,” J. Bone Jt. Surg., 58-A, pp. 583–593.
Butler,  D. L., Noyes,  F. R., and Grood,  E. S., 1980, “Ligamentous Restraints to Anterior-Posterior Drawer in the Human Knee,” J. Bone Jt. Surg., 62-A, pp. 259–270.
Piziali,  R. L., Seering,  W. P., Nagels,  D. A., and Schurman,  D. J., 1980, “The Function of the Primary Ligaments of the Knee in Anterior-Posterior and Medial-Lateral Motions,” J. Biomech., 13, pp. 777–784.
Lewis,  J. L., Lew,  W. D., Hill,  J. A., Ohland,  K. J., Kirstukas,  S., and Hunter,  R. E., 1989, “Knee Joint Motion and Ligament Forces Before and After ACL Reconstruction,” ASME J. Biomech. Eng., 3, pp. 97–106.
Livesay,  G. A., Fujie,  H., Kashiwaguchi,  S., Morrow,  D. A., Fu,  F. H., and Woo,  S. L-Y., 1995, “Determination of the In Situ Forces and Force Distribution within the Human Anterior Cruciate Ligament,” Ann. Biomed. Eng., 23, pp. 467–474.
Markolf,  K. L., Gorek,  J. F., Kabo,  J. M., Shapiro,  M. S., 1990, “Direct Measurement of Resultant Forces in the Anterior Cruciate Ligament,” J. Bone Jt. Surg., 72-A, pp. 557–567.
Sakane,  M., Fox,  R. J., Woo,  S. L-Y, Livesay,  G. A., Li,  G., and Fu,  F. H., 1997, “In Situ Forces in the Anterior Cruciate Ligament and its Bundles in Response to Anterior Tibial Loads,” J. Orthop. Res., 15, pp. 285–293.
Takai,  S., Woo,  S. L-Y, Livesay,  G. A., Adams,  D. J., and Fu,  F. H., 1993, “Determination of the In Situ Loads on the Human Anterior Cruciate Ligament,” J. Orthop. Res., 11, pp. 686–695.
Vahey,  J. W., and Draganich,  L. F., 1991, “Tensions in the Anterior and Posterior Cruciate Ligaments of the Knee During Passive Loading: Predicting Ligament Load from In Situ Measurements,” J. Orthop. Res., 9, pp. 529–538.
Ahmed,  A. M., Hyder,  A., Burke,  D. L., and Chan,  K. H., 1987, “In Vitro Ligament Tension Pattern in the Flexed Knee in Passive Loading,” J. Orthop. Res., 5, pp. 217–230.
Ahmed,  A. M., Burke,  D. L., Duncan,  N. A., and Chan,  K. H., 1992, “Ligament Tension Pattern in the Flexed Knee in Combined Passive Anterior Translation and Axial Rotation,” J. Orthop. Res., 10, pp. 854–867.
Markolf,  K. L., Burchfield,  D. M., Shapiro,  M. M., Shepard,  M. F., Finerman,  G. A., and Slanterback,  J. L., 1995, “Combined Knee Loading States That Generate High Anterior Cruciate Ligament Forces,” J. Orthop. Res., 13, pp. 930–935.
Arms,  S. W., Pope,  M. H., and Johnson,  R. J., 1984, “The Biomechanics of Anterior Cruciate Ligament Rehabilitation and Reconstruction,” Am. J. Sports Med.,, 12, pp. 8–18.
Grood,  E. S., Suntay,  W. J., Noyes,  F. R., and Butler,  D. L., 1984, “Biomechanics of the Knee-Extension Exercise,” J. Bone Jt. Surg., 66-A, pp. 725–734.
Morrison,  J. B., 1970, “The Mechanics of the Knee Joint in Relation to Normal Walking,” J. Biomech., 3, pp. 51–61.
Patriarco,  A. G., Mann,  R. W., Simon,  S. R., and Mansour,  J. M., 1981, “An Evaluation of the Optimization Models in the Prediction of Muscle Forces During Human Gait,” J. Biomech., 14(99), pp. 513–525.
Seireg,  A., and Arvikar,  R. J., 1975, “The Prediction of Muscular Load Sharing and Joint Forces in the Lower Extremities During Walking,” J. Biomech., 8, pp. 89–102.
Andriacchi,  T. P., 1990, “Dynamics of Pathological Motion: Applied to the Anterior Cruciate Deficient Knee,” J. Biomech., 23, pp. 99–105.
Andriacchi,  T. P., and Birac,  D., 1992, “Functional Testing in the Anterior Cruciate Ligament-Deficient Knee,” Clin. Orthop., 288, pp. 40–47.
Berchuck,  M., Andriacchi,  T. P., Bach,  R. B., and Reider,  B., 1990, “Gait Adaptation by Patients Who Have a Deficient Anterior Cruciate Ligament,” J. Bone Jt. Surg., 72-A, pp. 871–877.
Muneta,  T., Ogiuchi,  T., Imai,  S., and Istida,  A., 1998, “Measurements of Joint Moment and Knee Flexion Angle of Patients with Anterior Cruciate Ligament Deficiency During Level Walking and on One Leg Hop,” Biomed. Mater. Eng., 8, pp. 207–218.
Timoney,  J. M., Inman,  W. S., Quesada,  P. M., Sharkey,  P. E., Barrack,  R. L., Skinner,  H. B., and Alexander,  A. H., 1993, “Return of Normal Gait Patterns After Anterior Cruciate Ligament Reconstruction,” Am. J. Sports Med. , 21, pp. 887–889.
Devita,  P., Hortobagyi,  T., Barrier,  J., Torry,  M., Glover,  K. L., Speroni,  D. L., Money,  J., and Mahar,  M., 1997, “Gait Adaptations Before and After Anterior Cruciate Ligament Reconstruction Surgery,” Med. Sci. Sports Exercise, 29, pp. 853–859.
Kowalk,  D. L., Duncan,  J. A., McCue,  F. C., and Vaughan,  C. L., 1997, “Anterior Cruciate Ligament Reconstruction and Joint Dynamics During Stair Climbing,” Med. Sci. Sports Exercise, 29, pp. 1406–1413.
Wexler,  G., Hurwitz,  D. E., Bush-Joseph,  C. A., Andriacchi,  T. P., and Bach,  B. R., 1998, “Functional Gait Adaptations in Patients with Anterior Cruciate Ligament Deficiency Over Time,” Clin. Orthop., 348, pp. 166–175.
McLean, C. A., 1990, “Design, Development and Performance of a Dynamics Knee Simulator,” M. Eng. Thesis, Department of Mechanical Engineering, McGill University, Montreal, Quebec.
McLean,  C. A., and Ahmed,  A. M., 1993, “Design and Development of an Unconstrained Dynamic Knee Simulator,” ASME J. Biomech. Eng., 115, pp. 144–148.
Grood,  E. S., and Sunay,  W. J., 1983, “A Joint Coordinate System for the Clinical Description of Three-Dimensional Motions: Application to the Knee,” ASME J. Biomech. Eng., 105, pp. 136–144.
Mann,  R. A., and Hagy,  J., 1980, “Biomechanics of Walking, Running, and Sprinting,” Am. J. Sports Med. , 8(5), pp. 345–350.
Grundy,  M., Tosh,  P. A., McLeish,  R. D., and Smidt,  L., 1975, “An Investigation of the Centres of Pressure Under the Foot While Walking,” J. Bone Jt. Surg., 57-A(1), pp. 98–103.
Andriacchi, T. P., and Mikosz, R. P., 1991, “Musculoskeletal Dynamics, Locomotion and Clinical Applications,” Basic Orthopaedic Biomechanics (Edited by V. C. Mow, W. C. Hayes), pp. 51–92, Raven Press, New York.
Winter,  D. A., 1980, “Overall Principle of Lower Limb Support During Stance Phase of Gait,” J. Biomech., 13, pp. 923–927.
Chao,  E. Y., Laughman,  R. K., Schneider,  E., and Stauffer,  R. N., 1983, “Normative Data of Knee Joint Motion and Ground Reaction Forces in Adult Level Walking,” J. Biomech., 16(3), pp. 219–233.
Isacson,  J., Gransberg,  L., and Knutsson,  E., 1986, “Three-Dimensional Elecrogoniometeric Gait Recording,” J. Biomech., 19(8), pp. 627–635.
Lafortune,  M. A., Cavanagh,  P. R., Sommer,  H. J., and Kalenak,  A., 1992, “Three-Dimensional Kinematics of the Human Knee During Walking,” J. Biomech., 25, pp. 347–357.
Kadaba,  M. P., Ramakrishnan,  H. K., and Wootten,  M. E., 1990, “Measurement of Lower Extremity Kinematics During Level Walking,” J. Orthop. Res., 8, pp. 383–392.
Andriacchi,  T. P., Andersson,  G. B. J., Fermier,  R. W., Stern,  D., and Galante,  J. O., 1980, “A Study of Lower Limb Mechanics During Stair-Climbing,” J. Bone Jt. Surg., 62-A, pp. 749–757.
McFadyen,  B. J., and Winter,  D. A., 1988, “An Integrated Biomechanical Analysis of Normal Stair Ascent and Descent,” J. Biomech., 21, pp. 733–744.
Livingston,  L. A., Stevenson,  J. M., and Olney,  S. J., 1991, “Stairclimbing Kinematics on Stairs of Differing Dimensions,” Archive of Physical and Medical Rehabilitation, 72, pp. 398–402.
Grood,  E. S., Noyes,  F. R., Butler,  D. L., and Suntay,  W. J., 1981, “Ligamentous and Capsular Restraints Preventing Straight Medial and Lateral Laxity in Intact Human Cadaver Knees,” J. Bone Jt. Surg., 63-A, pp. 1257–1269.
Grood,  E. S., Stowers,  S. F., and Noyes,  F. R., 1988, “Limits of Movement in the Human Knee. Effects of Sectioning the Posterior Cruciate Ligament and Posterolateral Structures,” J. Bone Jt. Surg., 70-A, pp. 88–97.
Markolf,  K. L., Kochan,  A., and Amstutz,  H. C., 1984, “Measurement of Knee Stiffness and Laxity in Patients with Documented Absence of the Anterior Cruciate Ligament,” J. Bone Jt. Surg., 66-A, pp. 242–253.
Torzilli,  P. A., Greenberg,  R. L., and Insall,  J., 1974, “An In Vivo Biomechanical Evaluation of Anterior-Posterior Motion of the Knee. Roentgenographic Measurement Technique, Stress Machine and Stable Population,” J. Bone Jt. Surg., 63-A, pp. 161–170.
Pennock,  G. R., and Clark,  K. J., 1990, “An Anatomy-Based Coordinate System for the Description of the Kinematic Displacement in the Human Knee,” J. Biomech., 23, pp. 1209–1218.
Blankevoort,  L., Huiskes,  R., and de Lange,  A., 1988, “The Envelope of Passive Knee Joint Motion,” J. Biomech., 21, pp. 705–720.
Ahmed,  A. M., Burke,  D. L., and Hyder,  A., 1986, “Force Analysis of the Patellar Mechanism,” J. Orthop. Res., 5, pp. 69–85.
Matthews,  L. S., Sonstegard,  D. A., and Henke,  J. A., 1977, “Load Bearing Characteristics of the Patellofemoral Joint,” Acta Orthop. Scand., 48, pp. 511–516.
Wascher,  D. C., Markolf,  K. L., Shapiro,  M. S., and Finerman,  G. A., 1993, “Direct In Vitro Measurement of Forces in the Cruciate Ligament,” J. Bone Jt. Surg., 75-A, pp. 377–386.
Ahmed,  A. M., and Burke,  D. L., 1983, “In Vitro Measurement of Static Pressure Distribution in Synovial Joints—Part I: Tibial Surface of the Knee,” ASME J. Biomech. Eng., 105, pp. 216–225.

Figures

Grahic Jump Location
Simulator actuation system schematic. (a) Muscle actuation. (b) Foot-floor reaction actuation. For clarity, the moment actuation lever arm axis B has been shown displaced. In the simulator, it is coincident with the approximate knee joint flexion/extension axis A.
Grahic Jump Location
Tibiofemoral relative displacement axes. (a) Coordinate axes for rotations. (b) Coordinate axes for translations.
Grahic Jump Location
Typical knee radiographs used for the determination of the point Ot, the translations of which are measured. (a) Frontal radiograph. (b) Lateral radiograph. Note that the patellar hardware is unrelated to this study.
Grahic Jump Location
Input functions used in the simulation. (a) Walking, knee angle. (b) Walking, tibial axial force component of the foot-floor reaction. (c) Walking, flexion/extension moment component of the foot-floor reaction; 1: extensor muscle force intensive; 2: biphasic. (d) Stair ascent, knee angle. (e) Stair ascent, tibial axial force component of the foot-floor reaction. (f ) Stair ascent, flexion/extension moment component of the foot-floor reaction.
Grahic Jump Location
Tibial displacements (average ±1 STD) corresponding to the walking cycle when using the extensor muscle force intensive flexion/extension moment pattern. (a) to (e): as a function of percentage gait cycle. (f ) to (j): as a function of knee angle. The relation of the knee angle with the location in the gait cycle is highlighted as follows, 1: heel-strike; 2: maximum knee angle in stance; 3: minimum knee angle in terminal stance; 4: toe-off; 5: maximum knee angle (in swing).
Grahic Jump Location
The effect of ACL excision on tibial displacements for the walking cycle. (a) to (c): the increase in displacements (average ±1 STD) after ACL excision as a function of percentage gait cycle. Only the significantly affected displacements, measured using the extensor muscle force intensive flexion/extension moment pattern are shown. (d): comparison of the average increases in anterior/posterior translation as a function of percentage gait cycle, using the extensor muscle force intensive moment patter (1) and the biphasic moment pattern (2). (e) to (g): the same as (a) to (c), but as a function of flexion angle. (h): the same as (d), but as a function of flexion angle.
Grahic Jump Location
Tibial displacements (average ±1 STD) corresponding to the stair ascent cycle. (a) to (e): as a function of percentage gait cycle. (i) to (j): as a function of knee angle. The relation of the knee angle with the location in the gait cycle is highlighted as follows, 1: heel strike; 2: maximum knee angle in stance; 3: toe-off; 4: maximum knee angle (in swing).
Grahic Jump Location
The effect of ACL excision on tibial displacements (average ±1 STD) for the stair ascent cycle. The regions of significance are indicated as “S.” (a) and (c): increase in anterior translation. (b) and (d): increase in internal rotation.
Grahic Jump Location
Comparison with in vivo results of the out-of-plane rotations measured in this study for the walking cycle using the extensor muscle force intensive flexion/extension moment pattern (1), and biphasic flexion/extension moment pattern (2). (a) Adduction rotation. (b) Internal rotation.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In