0
TECHNICAL PAPERS

Spatial Micromovements of Uncemented Femoral Components After Torsional Loads

[+] Author and Article Information
W. Görtz

Biomechanical Research Laboratory, Orthopaedic Surgery Hospital, University of Heidelberg, Schlierbacher Landstr. 200a, 69118 Heidelberg, Germany

U. V. Nägerl

Max-Planck Institute of Neurobiology, Am Klopferspitz 18A, 82152 München-Martinsried, Germany

H. Nägerl

IV. Physical Institute, University of Göttingen, Bunsenstr. 13-15, 37073 Göttingen, Germany

M. Thomsen

Biomechanical Research Laboratory, Orthopaedic Surgery Hospital, University of Heidelberg, Schlierbacher Landstr. 200a, 69118 Heidelberg, Germanye-mail: Marc.Thomsen@ok.uni-heidelberg.de

J Biomech Eng 124(6), 706-713 (Dec 27, 2002) (8 pages) doi:10.1115/1.1517565 History: Received September 01, 2001; Revised July 01, 2002; Online December 27, 2002
Copyright © 2002 by ASME
Your Session has timed out. Please sign back in to continue.

References

Callaghan,  J. J., Fulghum,  C. S., Glisson,  R. R., and Stranne,  S. K., 1992, “The Effect of Femoral Stem Geometry on Interface Motion in Uncemented Porous-Coated Total Hip Prostheses,” J. Bone Jt. Surg., Am., 74(6), pp. 839–848.
Ducheyne,  P., De Meester,  P., and Aernoudt,  E., 1977, “Influence of a Functional Dynamic Loading on Bone Ingrowth into Surface Pores of Orthopedic Implants,” J. Biomed. Mater. Res., 11, pp. 811–838.
Engh,  C. A., O’Connor,  D., Jasty,  M., McGovern,  T. F., Bobyn,  J. D., and Harris,  W. H., 1992, “Quantification of Implant Micromotion, Strain Shielding, and Bone Resorption with Porous-Coated Anatomic Locking Femoral Prostheses,” Clin. Orthop., 285, pp. 13–29.
Fischer,  K. J., Carter,  D. R., and Maloney,  W. J., 1992, “In Vitro Study of Initial Stability of a Conical Collared Femoral Component,” J. Arthroplasty, 7, pp. 389–395.
Schenk,  R. K., and Wehrli,  U., 1989, “Zur Reaktion des Knochens auf eine zementfreie SL-Femur-Revisionsprothese,” Orthopäde, 18, pp. 454–462.
Whiteside,  L. A., and Easley,  J. C., 1989, “The Effect of Collar and Distal Stem Fixation on Micromotion of the Femoral Stem in Uncemented Total Hip Arthroplasty,” Clin. Orthop., 239, pp. 145–153.
Pilliar,  R. M., Lee,  J. M., and Maniatopoulos,  C., 1986, “Observation on the Effect of Movement on Bone Ingrowth into Porous-Surfaced Implants,” Clin. Orthop., 208, pp. 108–113.
Bergmann,  G., Graichen,  F., and Rohlmann,  A., “Hip Loading During Walking and Running Measured in Two Patients,” J. Biomech., 26 , pp. 969–990.
Davy,  D. T., Kotzar,  G. M., Brown,  R. H., Heiple,  K. G., Goldberg,  V. M., Heiple,  K. G., Berilla,  J., and Burstein,  A. H., 1988, “Telemetric Force Measurements Across the Hip after Total Arthroplasty,” J. Bone Jt. Surg., Am., 70(1), pp. 45–55.
Mjörberg,  B., Hansson,  L. I., and Selvik,  G., 1984, “Instability of Total Hip Prostheses at Rotational Stress,” Acta Orthop. Scand., 55, pp. 504–506.
Sugiyama,  H., Whiteside,  L. A., and Engh,  C. A., 1992, “Torsional Fixation of the Femoral Component in Total Hip Arthroplasty: The Effect of Surgical Press-Fit Technique,” Clin. Orthop., 275, pp. 187–193.
Gebauer,  D., Refior,  H. J., and Haake,  M., 1989, “Micromotions in the Primary Fixation of Cementless Femoral Stem Prostheses,” Arch. Orthop. Trauma Surg., 108, pp. 300–307.
Vanderby,  R., Manley,  P. A., Kohles,  S. S., and McBeath,  A. A., 1992, “Fixation Stability of Femoral Components in a Canine Hip Replacement Model,” J. Orthop. Res., 10, pp. 300–309.
Hua,  J., and Walker,  P. S., 1994, “Relative Motion of Hip Stems Under Load. An in Vitro Study of Symmetrical, Asymmetrical, and Custom Asymmetrical Designs,” J. Bone Jt. Surg., Am., 76(1), pp. 95–103.
Walker,  P. S., Schneeweis,  D., Murphy,  S., and Nelson,  P., 1987, “Strains and Micromotions of Press-Fit Femoral Stem Prosthesis,” J. Biomech., 20(7), pp. 693–702.
Harris,  W. H., Mulroy,  R. D., Maloney,  W. J., Burke,  D. W., Chandler,  H. P., and Zalenski,  E. B., 1991, “Intraoperative Measurement of Rotational Stability of Femoral Components of Total Hip Arthroplasty,” Clin. Orthop., 266, pp. 119–126.
Nägerl,  H., Kubein-Meesenburg,  D., Schäfer,  W., Cotta,  H., Thomsen,  M., Strachwitz,  B., and Fanghänel,  J., 1996, “Messung der räumlichen Mikrobewegung des Femurschaftes von Endoprothesen in Abhängigkeit des räumlichen Kraftsystems. [Measuring spatial micro-movement of the femur shaft of endoprostheses in relation to the spatial force system],” Z. Orthop., 134, pp. 99–110.
Cristofolini,  L., Viceconti,  M., Cappello,  A., and Toni,  A., 1996, “Mechanical Validation of Whole Bone Composite Femur Models,” J. Biomech., 29, pp. 525–535.
Schmidbauer,  U., Brendel,  T., Kunze,  K. G., Nietert,  M., and Ecke,  H., 1993, “Dynamic Force Measurement in Implantation of Total Endoprostheses of the Hip Joint,” Unfallchirurgie, 19, pp. 11–15.
Blaha,  J. D., Spotorno,  L., and Romagnoli,  S., 1991, “CLS Press-Fit Total Hip Arthroplasty,” Techniques Orthop., 6 , pp. 80–86.
Beatty,  M. F., 1966, “Kinematics of Finite, Rigid-Body Displacements,” Am. J. Phys., 34, pp. 949–954.
Kinzel,  G. L., Hall,  A. S., and Hillberry,  B. M., 1972, “Measurement of the Total Motion Between the two Body Segments-I. Analytical Development,” J. Biomech., 5, pp. 93–105.
Gilbert,  J. L., Bloomfield,  R. S., Lautenschläger,  E. P., and Wixson,  R. L., 1992, “A Computer-Based Biomechanical Analysis of Three-dimensional Motion of Cementless Hip Prosthesis,” J. Biomech., 25, pp. 329–340.
Schneider,  E., Eulenberger,  J., Steiner,  W., Wyder,  D., Friedman,  R. J., and Perren,  S. M., 1989, “Experimental Method for the in Vitro Testing of the Initial Stability of Cementless Hip Prostheses,” J. Biomech., 22, pp. 735–744.
Dürselen,  L., Claes,  L., and Wilke,  H. J., 1991, “Non-Contact Measurement of Small Translations and Rotations in all Degrees of Freedom,” Biomed. Tech., 36, pp. 248–252.
Tonino,  A. J., Romanini,  L., Rossi,  P., Borroni,  M., Greco,  F., Garcia-Araujo,  C., Garcia-Dihinx,  L., Murcia-Mazon,  A., Hein,  W., and Anderson,  J., 1995, “Hydroxyapatite-Coated Hip Prostheses. Early Results from an International Study,” Clin. Orthop., 312, pp. 211–225.
Rossi,  P., Sibelli,  P., Fumero,  S., and Crua,  E., 1995, “Short-Term Results of Hydroxyapatite-Coated Primary Total Hip Arthroplasty,” Clin. Orthop., 310, pp. 98–102.
Gibbons,  C. E., Davies,  A. J., Amis,  A. A., Olearnik,  H., Parker,  B. C., and Scott,  J. E., “Periprosthetic Bone Mineral Density Changes with Femoral Components of Differing Design Philosophy,” Int. Orthop., 25 (2), pp. 89–92.
Ohl,  M. D., Whiteside,  L. A., McCarthy,  D. S., and White,  S. E., 1993, “Torsional Fixation of a Modular Femoral Hip Component,” Clin. Orthop., 287, pp. 135–141.
Bobyn, J. D., Dujovne, A. R., Krygier, J. J., and Young, D. L., 1993, “Surface Analysis of the Taper Junctions of Retrieved and in Vitro Tested Modular Hip Prostheses. In Morrey BF (ed.). Biological, Material and Mechanical Considerations of Joint Replacement, Raven Press, Ltd., New York, pp. 287–301.
Dohle,  J., Becker,  W., and Braun,  M., 2001, “Radiological Analysis of Osseointegration after Implantation of the Zweymuller-Alloclassic Total Hip System,” Z. Orthop., 139, pp. 517–24.

Figures

Grahic Jump Location
The axial torque was produced by weights w1 (30 N) and w2 (30 N) whose horizontal distance was adjusted by two computer-controlled steppermotors. The weights w3 and w4 produced the axial preload of 80 N.
Grahic Jump Location
A-D. Survey of the 4 prostheses: (A) ABG, (B) CLS, (C) S-ROM, (D) Alloclassic
Grahic Jump Location
Survey of the levels of the measured sites with respect to the lesser trochanter
Grahic Jump Location
Insert from Fig. 1 showing the six dimensional measuring system. Six linear variable differential transducers in a three (S1, S2, S3)-two (S4, S5)-one (S6) setting to measure the spatial position of the movable cube shown here rigidly tied to the site #3 (8 cm below the lesser trochanter).
Grahic Jump Location
Rotational angle α as a function of torque Tz: typical characteristics. The dashed line represents the linear fit.
Grahic Jump Location
A-D. Examples of the 4 typical patterns of torque transfer. The micromotions between stem twist and bone twist are graphically indicated. The ordinate shows rotational displacement in millidegrees/Nm. The abscissa reveals these measurements dependent on site of measurement. Graph A (ABG) is typical for a proximal fixation. Graph B (CLS) represents proximal torque transfer with more distal fixation then A (distally shifted). The S-ROM (C) has proximal and distal torque transfer (overall fixation). Note that there is movement between sleeve and stem. The Alloclassic (D) is a representative for distal fixation with significant rotational displacement in the proximal part.
Grahic Jump Location
Distal limit of the area of maximum torque transfer to the composite femur for the 4 prostheses

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In