0
TECHNICAL PAPERS

Infrared Imaging of 2-D Temperature Distribution During Cryogen Spray Cooling

[+] Author and Article Information
Bernard Choi, Ashley J. Welch

Department of Biomedical Engineering; The University of Texas at Austin, Austin, TX 78712

J Biomech Eng 124(6), 669-675 (Dec 27, 2002) (7 pages) doi:10.1115/1.1517276 History: Received April 01, 2001; Revised June 01, 2002; Online December 27, 2002
Copyright © 2002 by ASME
Your Session has timed out. Please sign back in to continue.

References

Waldorf,  H. A., Alster,  T. S., McMillan,  K., Kauvar,  A. N. B., Geronemus,  R. G., and Nelson,  J. S., 1997, “Effect of Dynamic Cooling on 585-nm Pulsed Dye Laser Treatment of Port-Wine Stain Birthmarks,” Dermatol. Surg., 23, pp. 657–662.
Chang,  C. J., Anvari,  B., and Nelson,  J. S., 1998, “Cryogen Spray Cooling for Spatially Selective Photocoagulation of Hemangiomas: A New Methodology with Preliminary Clinical Reports,” Plast. Reconstr. Surg., 102, pp. 459–463.
Nelson,  J. S., Milner,  T. E., Anvari,  B., Tanenbaum,  B. S., Kimel,  S., Svaasand,  L. O., and Jacques,  S. L., 1995, “Dynamic Epidermal Cooling During Pulsed Laser Treatment of Port-Wine Stain: A New Methodology with Preliminary Clinical Evaluation,” Arch. Dermatol., 131, pp. 695–700.
Aguilar,  G., Majaron,  B., Verkruysse,  W., Zhou,  Y., Nelson,  J. S., and Lavernia,  E. J., 2001, “Theoretical and Experimental Analysis of Droplet Diameter, Temperature, and Evaporation Rate Evolution in Cryogenic Sprays,” Int. J. Heat Mass Transf., 44, pp. 3201–3211.
Anvari,  B., Milner,  T. E., Tanenbaum,  B. S., Kimel,  S., Svaasand,  L. O., and Nelson,  J. S., 1995, “Selective Cooling of Biological Tissues: Application for Thermally Mediated Therapeutic Procedures,” Phys. Med. Biol., 40, pp. 241–252.
Anvari,  B., Tanenbaum,  B. S., Milner,  T. E., Kimel,  S., Svaasand,  L. O., and Nelson,  J. S., 1995, “A Theoretical Study of the Thermal Response of Skin to Cryogen Spray Cooling and Pulsed Laser Irradiation: Implications for Treatment of Port Wine Stain Birthmarks,” Phys. Med. Biol., 40, pp. 1451–1465.
Anvari,  B., Milner,  T. E., Tanenbaum,  B. S., Kimel,  S., Svaasand,  L. O., and Nelson,  J. S., 1995, “Dynamic Epidermal Cooling in Conjunction with Laser Treatment of Port Wine Stains: Theoretical and Preliminary Clinical Evaluations,” Lasers in Medical Science, 10, pp. 105–112.
Anvari,  B., Tanenbaum,  B. S., Milner,  T. E., Tang,  K., Liaw,  L. H., Kalafus,  K., Kimel,  S., and Nelson,  J. S., 1996, “Spatially Selective Photocoagulation of Biological Tissues: Feasibility Study Utilizing Cryogen Spray Cooling,” Applied Optics, 35, pp. 3314–3320.
Anvari,  B., Tanenbaum,  B. S., Hoffman,  W., Said,  S., Milner,  T. E., Liaw,  L. H. L., and Nelson,  J. S., 1997, “Nd:YAG Laser Irradiation in Conjunction with Cryogen Spray Cooling Induces Deep and Spatially Selective Photocoagulation in Animal Models,” Phys. Med. Biol., 42, pp. 265–282.
Anvari,  B., Ver Steeg,  B. J., Milner,  T. E., Tanenbaum,  B. S., Klein,  T. J., Gerstner,  E., Kimel,  S., and Nelson,  J. S., 1997, “Cryogen Spray Cooling of Human Skin: Effects of Ambient Humidity Level, Spraying Distance, and Cryogen Boiling Point,” Proc. SPIE, 3192, pp. 106–110.
Anvari,  B., Milner,  T. E., Tanenbaum,  B. S., and Nelson,  J. S., 1998, “A Comparative Study of Human Skin Thermal Response to Sapphire Contact and Cryogen Spray Cooling,” IEEE Trans. Biomed. Eng., 45, pp. 934–941.
Milner,  T. E., Anvari,  B., Keikhanzadeh,  K., Dave,  D., Nelson,  J. S., Goodman,  D. M., Hennings,  D., Baumgardner,  J., and Berry,  M., 1997, “Analysis of Nonablative Skin Resurfacing,” Proc. SPIE, 2970, pp. 367–373.
Nelson,  J. S., Milner,  T. E., Anvari,  B., Tanenbaum,  B. S., Svaasand,  L. O., and Kimel,  S., 1996, “Dynamic Epidermal Cooling in Conjunction with Laser-Induced Photothermolysis of Port Wine Stain Blood Vessels,” Lasers in Surgery and Medicine, 19, pp. 224–229.
Torres,  J. H., Nelson,  J. S., Tanenbaum,  B. S., Milner,  T. E., Goodman,  D. M., and Anvari,  B., 1999, “Estimation of Internal Skin Temperatures in Response to Cryogen Spray Cooling: Implications for Laser Therapy of Port Wine Stains,” IEEE J. Sel. Top. Quantum Electron., 5, pp. 1058–1066.
Verkruysse,  W., Majaron,  B., Aguilar,  G., Svaasand,  L. O., and Nelson,  J. S., 2000, “Dynamics of Cryogen Deposition Relative to Heat Extraction Rate During Cryogen Spray Cooling,” Proc. SPIE, 3907, pp. 37–48.
Verkruysse,  W., Majaron,  B., Tanenbaum,  B. S., and Nelson,  J. S., 2000, “Optimal Cryogen Spray Cooling Parameters for Pulsed Laser Treatment of Port Wine Stains,” Lasers in Surgery and Medicine, 27, pp. 165–170.
Torres,  J. H., Anvari,  B., Tanenbaum,  B. S., Milner,  T. E., Yu,  J. C., and Nelson,  J. S., 1999, “Internal Temperature Measurements in Response to Cryogen Spray Cooling of a Skin Phantom,” Proc. SPIE, 3590, pp. 11–19.
Choi,  B., Pearce,  J. A., and Welch,  A. J., 2000, “Modeling Infrared Temperature Measurements: Implications for Laser Irradiation and Cryogen Cooling Studies,” Phys. Med. Biol., 45, pp. 541–557.
Choi,  B., and Welch,  A. J., 2001, “Jet Impingement Modeling of Cryogen Spray Cooling: Analysis of 2-D Cryogen Temperature Distribution,” Proc. SPIE, 4244, pp. 93–104.
Aguilar,  G., Majaron,  B., Viator,  J. A., Basinger,  B., Karapetian,  E., Svaasand,  L. O., Lavernia,  E. J., and Nelson,  J. S., 2001, “Influence of Spraying Distance and Post-Cooling on Cryogen Spray Cooling for Dermatologic Laser Surgery,” Proc. SPIE, 4244, pp. 82–92.
Incropera, F. P. and DeWitt, D. P., 1996, Fundamentals of Heat and Mass Transfer, John Wiley & Sons, New York.
Scherer,  K., Lorenz,  S., Wimmershoff,  M., Landthaler,  M., and Hohenleutner,  U., 2001, “Both the Flashlamp-Pumped Dye Laser and the Long-Pulsed Tunable Dye Laser can Improve Results in Port-Wine Stain Therapy,” Br. J. Dermatol., 145, pp. 79–84.
Tunnell,  J. W., Nelson,  J. S., Torres,  J. H., and Anvari,  B., 2000, “Epidermal Protection with Cryogen Spray Cooling During High Fluence Pulsed Dye Laser Irradiation: An Ex Vivo Study,” Lasers Surg. Med., 27, pp. 373–383.
Choi,  B., and Welch,  A. J., 2001, “Analysis of Thermal Relaxation During Laser Irradiation of Tissue,” Lasers Surg. Med., 29, pp. 351–359.
Choi,  B., Aguilar,  G., Vargas,  G., Welch,  A. J., and Nelson,  J. S., 2002, “Dynamic Measurements of Laser Light Attenuation by Cryogen Film and Frost Formation,” Proc. SPIE, 4609, pp. 57–66.
Majaron,  B., Kimel,  S., Verkruysse,  W., Aguilar,  G., Pope,  K., Svaasand,  L. O., Lavernia,  E. J., and Nelson,  J. S., 2001, “Cryogen Spray Cooling in Laser Dermatology: Effects of Ambient Humidity and Frost Formation,” Lasers Surg. Med., 28, pp. 469–476.
Kauvar,  A. N. B., Lou,  W. W., and Zelickson,  B., 2000, “Effect of Cryogen Spray Cooling on 595 nm, 1.5 msec Pulsed Dye Laser Treatment of Port Wine Stains,” Lasers Surg. Med., Supplement 12, p. 24.
Kelly,  K. M., Nanda,  V. S., Shirin,  S., and Nelson,  J. S., 2000, “Vascular Lesion Treatment Utilizing a Pulsed Dye Laser at High Fluences in Combination with Cryogen Spray Cooling,” Lasers Surg. Med., Supplement 12, pp. 24–25.
Welch,  A. J., 1984, “The Thermal Response of Laser Irradiated Tissue,” IEEE J. Quantum Electron., QE-20, pp. 1471–1481.
Pfefer,  T. J., Barton,  J. K., Smithies,  D. J., Milner,  T. E., Nelson,  J. S., van Gemert,  M. J. C., and Welch,  A. J., 1999, “Modeling Laser Treatment of Port Wine Stains with a Computer-Reconstructed Biopsy,” Lasers Surg. Med., 24, pp. 151–166.
Liu,  X., Lienhard,  J. H., and Lombara,  J. S., 1991, “Convective Heat Transfer by Impingement of Circular Liquid Jets,” J. Heat Transfer, 113, pp. 571–582.
Majaron,  B., Aguilar,  G., Basinger,  B., Randeberg,  L. L., Svaasand,  L. O., Lavernia,  E. J., and Nelson,  J. S., 2001, “Sequential Cryogen Spraying for Heat Flux Control at the Skin Surface,” Proc. SPIE, 4244, pp. 74–81.
Aguilar,  G., Majaron,  B., Pope,  K., Svaasand,  L. O., Lavernia,  E. J., and Nelson,  J. S., 2001, “Influence of Nozzle-to-Skin Distance in Cryogen Spray Cooling for Dermatologic Laser Surgery,” Lasers Surg. Med., 28, pp. 113–120.

Figures

Grahic Jump Location
Schematic of possible: (a) front-side and (b) back-side infrared imaging setups for determining the front-surface temperature distribution during cryogen spray cooling.
Grahic Jump Location
Diagram of experimental setup used to measure the back-side temperature distribution during cryogen spray cooling. DDG=digital delay generator, DCD=Dynamic Cooling Device.
Grahic Jump Location
3-D plots of mean back-side temperature distributions estimated from infrared images at (a) 10 ms, (b) 40 ms, and (c) 100 ms after the onset of a 100-ms cryogen spurt.
Grahic Jump Location
Average line profiles of back-side temperature distributions at the end of cryogen spurts of varying duration. Line profiles were taken through the approximate center of the cooled region.
Grahic Jump Location
Cooling temperature distribution versus radial position for 20–100 ms cryogen spurt durations. The profiles were obtained by normalizing the temperature distributions measured with the infrared camera (Fig. 4) and setting the minimum temperature to −58°C, which is the assumed cryogen temperature at the center of the spray (see Ref. 20).
Grahic Jump Location
Temperature differential plots calculated at the end of (a) 20-; (b) 40-; (c) 60-; (d) 80-; and (e) 100-ms cryogen spurts. The y-axis represents the difference between the temperatures calculated assuming a uniform cooling distribution and those calculated assuming a nonuniform cooling distribution. The four curves in each plot represent radial differential temperature profiles calculated at depths of 0, 60, 150, and 400 μm.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In