Low Background, Pulsatile, In Vitro Flow Circuit for Modeling Coronary Implant Thrombosis

[+] Author and Article Information
Kumaran Kolandaivelu

Harvard-MIT Division of Health Science and Technology, Massachusetts Institute of Technology, 77 Massachusetts Ave. Bldg 16-343, Cambridge, MA 02139  

Elazer R. Edelman

Harvard-MIT Division of Health Science and Technology, Massachusetts Institute of Technology, 77 Massachusetts Ave. Bld 16-343, Cambridge, MA 02139Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115

J Biomech Eng 124(6), 662-668 (Dec 27, 2002) (7 pages) doi:10.1115/1.1517062 History: Received April 01, 2001; Revised June 01, 2002; Online December 27, 2002
Copyright © 2002 by ASME
Your Session has timed out. Please sign back in to continue.


Schatz,  R. A., 1997, “The Evolution of Antithrombotic Therapy in Coronary Stenting,” American Heart Journal, 134, pp. S78–S80.
Mak,  K., Belli,  G., Ellis,  S. G., and Moliterno,  D. J., 1996, “Subacute stent thrombosis: Evolving issues and current concepts,” J. Am. Coll. Cardiol., 27(2), pp. 494–503.
Waugh,  J. M., Li-Hawkins,  J., Yuksel,  E., Kuo,  M. D., Cifra,  P. N., Hilfiker,  P. R., Geske,  R., Chawla,  M., Thomas,  J., Shenaq,  S. M., Dake,  M. D., and Woo,  S. L. 2000, “Thrombomodulin overexpression to limit neointima formation,” Circulation, 102(3), pp. 332–337.
Kastrati,  A., Mehilli,  J., Dirschinger,  J., Pache,  J., Ulm,  K., Schuhlen,  H., Seyfarth,  M., Schmitt,  C., Blasini,  R., Neumann,  F. J., and Schomig,  A., 2001, “Restenosis after coronary placement of various stent types,” Am. J. Cardiol., 87(1), pp. 34–39.
Lascalzo, J., and Schafer, A.I., 1994, Thrombosis and Hemorrhage, Blackwell Scientific Publications.
Basmadjian,  D., 1990, “The effect of flow and mass transport in thrombogenisis,” Ann. Biomed. Eng., 18, pp. 685–709.
Turitto,  V. T., and Baumgartner,  H. R., 1975, “Platelet deposition on subendothelial exposed to flowing blood: Mathematical analysis of physical parameters,” Trans. Am. Soc. Artif. Intern. Organs, 21, pp. 593–601.
Lyne,  W. H., 1970, “Unsteady viscous flow in a curved pipe,” J. Fluid Mech., 45(1), pp. 13–31.
Moore,  J. E., Guggenheim,  N., Delfino,  A., Doriot,  P. A., Dorsaz,  P. A., Rutishauser,  W., and Meister,  J. J., 1994, “Preliminary analysis of the effects of blood vessel movement on blood flow patterns in the coronary arteries,” J. Biomech. Eng., 116, pp. 302–306.
Brodkey, R. S., 1967, The Phenomena of Fluid Motions, Addison-Wesley Publishing Company.
Zapryanov,  Z., and Matakiev,  V., 1980, “An exact solution of the problem of unsteady fully-developed viscous flow in slightly curved porous tube,” Arch. Mech., 32, pp. 461–474.
Myers,  L. J., and Capper,  W. L., 2001, “Analytical solution for Pulsatile Axial Flow Velocity Waveforms in Curved Elastic Tubes,” IEEE Trans. Biomed. Eng., 48(8), pp. 864–873.
Nerem, R. M., and Seed, W. A., 1983, “Coronary Artery Geometry and its Fluid Mechanical Implications,” Fluid Dynamics as a Localizing Factor in Atherosclerosis. (Edited by Schettler, G.). Springer, Berlin.
Chang,  L. J., and Tarbell,  J. M., 1988, “A numerical study of flow in curved tubes simulating coronary arteries,” J. Biomech., 21, pp. 927–937.
Berger,  S. A., Talbot,  L., and Yao,  L.-S., 1983, “Flow in curved pipes,” Annu. Rev. Fluid Mech., 15, pp. 461–512.
Perktold,  K., Nerem,  R. M., and Peter,  R. O., 1991, “A numerical calculation of flow in a curved tube model of the left main coronary artery,” J. Biomech., 24(3/4), pp. 175–189.
Perktold,  K., Hofer,  M., Rappitsch,  G., Loew,  M., Kuban,  B. D., and Friedman,  M. H., 1998, “Validated computation of physiologic flow in a realistic coronary artery branch,” J. Biomech., 31, pp. 217–228.
Rosenhead, L., 1963, Laminar Boundary Layers, Oxford University Press.
Berne, R. M., and Levy, M. N., 1992, Cardiovascular Physiology (Sixth Ed.), Mosby Year Book.
Baldwin,  S., and Basmadjian,  D., 1994, “A mathematical model of thrombin production in blood coagulation: The sparsely covered membrane case,” Ann. Biomed. Eng., 22, pp. 357–370.
Chandler,  A. B., 1958, “In vitro thombotic coagulation of the blood,” Lab. Invest. 7(2), pp. 110–114.
Haycox,  C. L., and Ratner,  B. D., 1993, “In vitro platelet interactions in whole human blood exposed to biomaterial surfaces: Insights on blood compatibility,” J. Biomed. Mater. Res., 27, pp. 1181–1193.
Grabowski,  E. F., 1988, “Effects of contrast media on erythrocyte and platelet interactions with endothelial cell monolayers exposed to flowing blood,” Invest. Radiol., 23(Suppl 2), pp. S351–S358.
Goto,  S., and Handa,  S., 1998, “Coronary thrombosis: Effects of blood flow on the mechanism of thrombus formation,” Jpn. Heart J., 39(5), pp. 579–596.
Beythian,  C., Terres,  W., and Hamm,  C. W., 1994, “In vitro model to test the thrombogenicity of coronary stents,” Thromb. Res.,75(6), pp. 581–590.
Gutensohn,  K., Beythian,  C., Bau,  J., Meinertz,  T., and Kuehnl,  P., 1997, “Flow cytometric analysis of coronary stent-induced alterations of platelet antigens in an in vitro model,” Thromb. Res., 86(1), pp. 49–56.
Beythien,  C., Gutensohn,  K., and Bau,  J., 1999, “Influence of stent length and heparin coating on platelet activation: A flow cytometric analysis in a pulsed floating model,” Thromb. Res., 94, pp. 79–86.
Tarnok,  A., Mahnke,  A., Muller,  M., and Zotz,  R. J., 1999, “Rapid in vitro biocompatibility assay of endovascular stents by flow cytometry using platelet activation and platelet-leukocyte aggregation,” Cytometry, 38, pp. 30–39.
Makkar,  R. R., Eigler,  N. L., Kaul,  S., Frimmerman,  A., Nakamura,  M., Shah,  P. K., Forrester,  J. S., Herbert,  J. M., and Litvack,  F., 1998, “Effects of clopidogrel, asprin, and combined therapy in a porcine ex-vivo model of high-shear induced stent thrombosis,” Eur. Heart J., 19(10), pp. 1538–1546.
Verheye,  S., C. P.,  Markou, M. Y.,  Salame, B.,  Wan, King,  S. B., Robinson,  K. A., Chronos,  N. A., and Hanson,  S. R., 2000, “Reduced thrombus formation by hyaluronic acid coating of endovascular device,” Arterioscler., Thromb., Vasc. Biol., 20(4), pp. 1168–1172.
Schmidt,  B., 1994, “Experimental test systems for the assessment of the blood compatibility of materials used in extracorporeal circuits,” Nephrology Dialysis Transplantation, 9(Suppl. 2), pp. 77–82.
Schatz,  R. A., Baim,  D. S., Leon,  M., Ellis,  S. G., Goldberg,  S., Hirschfeld,  J. W., Cleman,  M. W., Cabin,  H. S., Walker,  C., Stagg,  J., Buchbinder,  M., Teirstein,  P. S., Topol,  E. J., Savage,  M., Perez,  J. A., Curry,  R. C., Whitworth,  H., Sousa,  J. E., Tio,  F., Almagor,  Y., Ponder,  R., Penn,  I. M., Leonard,  B., Levine,  S. L., Fish,  R. D., and Palmaz,  J. C., 1991, “Clinical experience with the Palmaz-Schatz coronary stent: initial results of a multicenter study,” Circulation, 83, pp. 148–161.
Shaknovich,  A., Moses,  J. W., Bailey,  S., Ricci,  D., Kiesz,  S., Tierstein,  P., and Schatz,  R. A., 1994, “Subacute stent thrombosis in the stent REStenosis study (STRESS): Clinical impact and predictive factors,” Circulation, 90(Suppl I), pp. I–650.
De Servi,  S., Repetto,  S., Klugmann,  S., Bossi,  I., Colombo,  A., Piva,  R., Giommi,  L., Bartorelli,  A., Fontanelli,  A., Mariani,  G., and Klersy,  C., 1999, “Stent thrombosis: Incidence and related factors in the R.I.S.E. Registry (Registro Impianto Stent Endocoronarico),” Catheterization and Cardiovascular Interventions, 46, pp. 13–18.
Savage,  B., Saldivar,  E., and Ruggeri,  Z. M., 1996, “Initiation of platelet adhesion by arrest onto fibrinogen or translocation on von Willebrand Factor,” Cell, 84, pp. 289–297.
Barshtein,  G., Bergelson,  L., Gratton,  E., and Yedgar,  S., 1997, “Membrane lipid order of human red blood cells is altered by physiological levels of hydrostatic pressure,” Am. J. Physiol., 272(1pt2), H538–H543.
Ziegler,  T., and Nerem,  R. M., 1994, “Tissue engineering a blood vessel: regulation of vascular biology by mechanical stresses,” J. Cell Biol., 56(2), pp. 147–149.


Grahic Jump Location
Impulsive fluidic response to a step in rotor velocity
Grahic Jump Location
Sample flow profiles depicting some of the possibilities achievable with this type of flow generation; (a) Square; (b) Triangular; (c) Sinusoidal
Grahic Jump Location
Modeled coronary profiles; (a) Typical left anterior descending coronary flow pattern superimposed on the modeled, bi-directional, coronary-type flow profile; (b) The wall, Vwall, and fluid, Vfluid, velocities in the inertial reference frame required to drive the relative coronary flow velocity, Vrel. Note that Vrel is essentially zero by the time Vwall initiates a new cycle.
Grahic Jump Location
Occlusion time trial for 6 stainless steel 7-9 NIR® stented loops
Grahic Jump Location
Occlusion time trial depicting 3 stainless steel 7-9 NIR® stented loops (in blue) and 3 stentless control loops (in green)
Grahic Jump Location
General system schematic
Grahic Jump Location
Embodied fluid loop design and dimensions; (a) Fluid loop; (b) cross-sectional view through a fitting. The three equally spaced fittings were positioned to minimally disrupt the loop curvature. One fitting serves as a connector to create the fluid loop by securely holding the two ends of the tubing length in apposition. The two other fittings serve as inlet and outlet ports for the injection of fluid.



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In