Frank,
E. H., and Grodzinsky,
A. J., 1987, “Cartilage Electromechanics-I. Electrokinetic Transduction and the Effects of Electrolyte pH and Ionic Strength,” J. Biomech., 20, pp. 615–627.

Guilak,
F., 1995, “Compression-induced Changes in the Shape and Volume of the Chondrocyte Nucleus,” J. Biomech., 28, pp. 1529–1542.

Maroudas, A., 1979, “Physicochemical Properties of Articular Cartilage,” In: *Adult Articular Cartilage*, edited by M. Freeman. Tunbridge Wells: Pitman Medical, pp. 215–290.

Mow, V. C., Bachrach, N., Setton, L. A., and Guilak, F., 1994, “Stress, Strain, Pressure, and Flow Fields in Articular Cartilage,” In: *Cell Mechanics and Cellular Engineering*, edited by V. C. Mow, F. Guilak, R. Tran-Son-Tay and R. Hochmuth. New York: Springer, Verlag, pp. 345–379.

Guilak, F., Sah, R. L., and Setton, L. A., 1997, “Physical Regulation of Cartilage Metabolism,” In: *Basic Orthopaedic Biomechanics* (2nd ed.), edited by V. C. Mow and W. C. Hayes. Philadelphia: Lippincott-Raven, pp. 179–207.

Guilak,
F., Jones,
W. R., Ting-Beall,
H. P., and Lee,
G. M., 1999a, “The Deformation Behavior and Mechanical Properties of Chondrocytes in Articular Cartilage,” Osteoarthritis Cartilage, 7, pp. 59–70.

Jones,
W. R., Ting-Beall,
H. P., Lee,
G. M., Kelley,
S. S., Hochmuth,
R. M., and Guilak,
F., 1999, “Alterations in Young’s Modulus and Volumetric Properties of Chondrocytes Isolated from Normal and Osteoarthritic Human Cartilage,” J. Biomech., 32, pp. 119–127.

Agresar,
G., Linderman,
J. J., Tryggvason,
G., and Powell,
K. G., 1998, “An Adaptive, Cartesian, Front-Tracking Method for the Motion, Deformation and Adhesion of Circulating Cells,” J. Comput. Phys., 143, pp. 346–380.

Dong,
C., and Skalak,
R., 1992, “Leukocyte Deformability: Finite Element Modeling of Large Viscoelastic Deformation,” J. Theor. Biol., 158, pp. 173–193.

Drury,
J. L., and Dembo,
M., 1999, “Hydrodynamics of Micropipette Aspiration,” Biophys. J., 76, pp. 110–128.

Evans,
E., and Yeung,
A., 1989, “Apparent Viscosity and Cortical Tension of Blood Granulocytes Determined by Micropipette Aspiration,” Biophys. J., 56, pp. 151–160.

Needham,
D., and Hochmuth,
R. M., 1990, “Rapid Flow of Passive Neutrophils into a 4 μm Pipet and Measurement of Cytoplasmic Viscosity,” J. Biomech., 112, pp. 269.

Tsai,
M. A., Frank,
R. S., and Waugh,
R. E., 1993, “Passive Mechanical—Behavior of Human Neutrophils—Power-Law Fluid,” Biophys. J., 65, pp. 2078–2088.

Bottino,
D. C., 1998, “Modeling Viscoelastic Networks and Cell Deformation in the Context of the Immersed Boundary Method,” J. Comput. Phys., 147, pp. 86–113.

Bagge,
U., Skalar,
R., and Attefors,
R., 1977, “Granulocyte Rheology: Experimental Studies in an In Vitro Microflow System,” Adv. Microcirc., 7, pp. 29–48.

Sato,
M., Theret,
D. P., Wheeler,
L. T., Ohshima,
N., and Nerem,
R. M., 1990, “Application of the Micropipette Technique to the Measurement of Cultured Porcine Aortic Endothelial Cell Viscoelastic Properties,” ASME J. Biomech. Eng., 112, pp. 263–268.

Schmid-Schonbein,
G. W., Sung,
K.-L. P., Tozeren,
H., Skalak,
R., and Chien,
S., 1981, “Passive Mechanical Properties of Human Leukocytes,” Biophys. J., 36, pp. 243–256.

Shin,
D., and Athanasiou,
K. A., 1999, “Cytoindentation for Obtaining Cell Biomechanical Properties,” J. Orthop. Res., 17, pp. 880–890.

Theret,
D. P., Levesque,
M. J., Sato,
M., Nerem,
R. M., and Wheeler,
L. T., 1988, “The Application of a Homogeneous Half-Space Model in the Analysis of Endothelial Cell Micropipette Measurements,” ASME J. Biomech. Eng., 110, pp. 190–199.

Guilak,
F., Ting-Beall,
H. P., Baer,
A. E., Jones,
W. R., Erickson,
G. R., and Setton,
L. A., 1999, “Viscoelastic Properties of Intervertebral Disc Cells: Identification of Two Biomechanically Distinct Populations,” Spine, 24, pp. 2475–2483.

Guilak,
F., and Ting-Beall,
H. P., 1999, “The Effects of Osmotic Presure on the Viscoelastic and Physical Properties of Articular Chondrocytes,” Adv. Bioeng., 43, pp. 103–104.

Lee,
D. A., Knight,
M. M., Bolton,
J. F., Idowu,
B. D., Kayser,
M. V., and Bader,
D. L., 2000, “Chondrocyte Deformation Within Compressed Agarose Constructs at the Cellular and Sub-cellular Levels,” J. Biomech., 33, pp. 81–95.

Guilak,
F., and Mow,
V. C., 2000, “The Mechanical Environment of the Chondrocyte: A Biphasic Finite Element Model of Cell-Matrix Interactions in Articular Cartilage,” J. Biomech., 33, pp. 1663–1673.

Cruse,
T. A., Snow,
D. W., and Wilson,
R. B., 1977, “Numerical Solutions in Axisymmetric Elasticity,” Comput. Struct., 7, pp. 445–451.

Rizzo,
F. J., 1967, “An Integral Equation Approach to Boundary Value Problems of Classical Elastostatics,” Q. Appl. Math., 25, pp. 83–95.

Bakr, A. A., 1986, *The Boundary Integral Equation Method in Axisymmetric Stress Analysis Problems*, Springer-Verlag.

Stroud, A. H., and Secrest, D., 1966, *Gaussian Quadrature Formulae*, Prentice-Hall, New York.

Abramowitz, M., and Stegun, I. A., 1972, *Handbook of Mathematical Functions*, Dover, New York.

Haider, M. A., and Guilak, F., 1999, “A Viscoelastic Boundary Element Model of Contact in the Micropipette Aspiration Test,” *Proceedings of the Bioengineering Conference*, ASME, 42 , pp. 339–340.

Haider,
M. A., and Guilak,
F., 2000, “An Axisymmetric Boundary Integral Model for Incompressible Linear Viscoelasticity: Application to the Micropipette Aspiration Contact Problem,” ASME J. Biomech. Eng., 122, pp. 236–244.