0
TECHNICAL PAPERS

An Automated Approach for Direct Measurement of Two-Dimensional Strain Distributions Within Articular Cartilage Under Unconfined Compression

[+] Author and Article Information
Christopher C-B. Wang, Jian-Ming Deng, Gerard A. Ateshian, Clark T. Hung

Cellular Engineering Laboratory and Musculoskeletal Biomechanics Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY 10027

J Biomech Eng 124(5), 557-567 (Sep 30, 2002) (11 pages) doi:10.1115/1.1503795 History: Received May 01, 2001; Revised May 01, 2002; Online September 30, 2002
Copyright © 2002 by ASME
Your Session has timed out. Please sign back in to continue.

References

Mow, V. C., and Ateshian, G. A., 1997, “Lubrication and Wear of Diarthrodial Joints,” Basic Orthopaedic Biomechanics, V. C. Mow, and Hayes, W. C., ed., Lippincott-Raven, Philadelphia, pp. 273–315.
Maroudas, A., 1979, “Physicochemical Properties of Articular Cartilage,” Adult Articular Cartilage, M. A. R. Freeman, eds., Pitman Medical, Kent, UK, pp. 215–290.
Stockwell, R. S., 1979, Biology of Cartilage Cells, Cambridge Press, Cambridge.
Aydelotte, M. B., Schumacher, B. L., and Kuettner, K. E., 1992, “Heterogeneity of Articular Chondrocytes,” Articular Cartilage and Osteoarthritis, K. E. Kuettner, eds., Raven Press, New York, pp. 237–249.
Guilak,  F., Ratcliffe,  A., and Mow,  V. C., 1995, “Chondrocyte Deformation and Local Tissue Strain in Articular Cartilage: A Confocal Microscopy Study,” J. Orthop. Res., 13, pp. 410–422.
Grodzinsky, A. J., Frank, E. H., Kim, Y. J., and Buschmann, M. D., 1996, “The Role of Specific Macromolecules in Cell-Matrix Interactions and in Matrix Function: Physicochemical and Mechanical Mediators of Chondrocyte Biosynthesis,” Extracellular Matrix, W. D. Comper, eds., Harwood Academic Publishers, Melbourne, Australia, pp. 310–334.
Lipshitz,  H., Etheredge,  R., and Glimcher,  M. J., 1976, “Changes in the Hexosamine Content and Swelling Ratio of Articular Cartilage as Functions of Depth from the Surface,” J. Bone Jt. Surg., Am. Vol. 58A, pp. 1149–1153.
Maroudas,  A., Muir,  H., and Wingham,  J., 1969, “The Correlation of Fixed Negative Charge with Glycosaminoglycan Content of Human Articular Cartilage,” Biochim. Biophys. Acta, 177, pp. 492–500.
Venn,  M., and Maroudas,  A., 1977, “Chemical Composition of Normal and Osteoarthritic Femoral Head Cartilage,” Ann. Rheum. Dis., 36, pp. 121–129.
Weiss,  C., Rosenberg,  L., and Helfet,  A. J., 1968, “An Ultrastructural Study of Normal Young Adult Human Articular Cartilage,” J. Bone Jt. Surg., Am. Vol. 50A, pp. 663–674.
Redler,  I., and Zimny,  M. L., 1970, “Scanning Electron Microscopy of Normal and Abnormal Articular Cartilage and Synovium,” J. Bone Jt. Surg., Am. Vol. 52A, pp. 1395–1407.
Clark,  I. C., 1971, “Articular Cartilage: A Review and Scanning Electron Microscopy Study—I. The Interterritorial Fibrillar Architecture,” J. Bone Jt. Surg., Am. Vol. 53B, pp. 732–750.
Bullough,  P. G., and Jagannath,  A., 1983, “The Morphology Ofthe Calcification Front in Articular Cartilage,” J. Bone Jt. Surg., Am. Vol. 65B, pp. 72–90.
Hunziker, E. B., 1992, “Articular Cartilage Structure in Humans and Experimental Animals,” Articular Cartilage and Osteoarthritis, K. E. Kuettner, Schleyerbach, R., Peyron, J. G., and Hascall, V. C., eds., Raven Press, New York, pp. 183–199.
Brocklehurst,  R., Bayliss,  M. T., Maroudas,  A., Coysh,  H. L., Freeman,  M. A., Revell,  P. A., and Ali,  S. Y., 1984, “The Composition of Normal and Osteoarthritic Articular Cartilage from Human Knee Joints,” J. Bone Jt. Surg., Am. Vol. 66A, pp. 95–106.
Mow,  V. C., and Wang,  C. C.-B., 1999, “Some Bioengineering Considerations for Tissue Engineering of Articular Cartilage,” Clin. Orthop., 367 Suppl, pp. S204–S223.
Mow,  V. C., Wang,  C. C.-B., and Hung,  C. T., 1999, “The Extracellular Matrix, Interstitial Fluid and Ions as a Mechanical Signal Transducer in Articular Cartilage,” Osteoarthritis Cartilage, 7, pp. 41–59.
Woo,  S. L.-Y., Akeson,  W. H., and Jemmott,  G. F., 1976, “Measurements of Nonhomogeneous Directional Mechanical Properties of Articular Cartilage in Tension,” J. Biomech., 9, pp. 785–791.
Kempson, G. E., 1979, “Mechanical Properties of Articular Cartilage,” Adult Articular Cartilage, M. A. R. Freeman, ed., Pitman Medical, Kent, England, pp. 333–414.
Roth,  V., and Mow,  V. C., 1980, “The Intrinsic Tensile Behavior of the Matrix of Bovine Articular Cartilage and Its Variation with Age,” J. Bone Jt. Surg., 62A, pp. 1102–1117.
Schinagl,  R. M., Gurkis,  D., Chen,  C. C., and Sah,  R. L.-Y., 1997, “Depth-Dependent Confined Compression Modulus of Full-Thickness Bovine Articular Cartilage,” J. Orthop. Res., 15, pp. 499–506.
Schinagl,  R. M., Ting,  M. K., Price,  J. H., and Sah,  R. L., 1996, “Video Microscopy to Quantitate the Inhomogeneous Equilibrium Strain within Articular Cartilage During Confined Compression,” Ann. Biomed. Eng., 24, pp. 500–512.
Jurvelin,  J. S., Buschmann,  M. D., and Hunziker,  E. B., 1997, “Optical and Mechanical Determination of Poisson’s Ratio of Adult Bovine Humeral Articular Cartilage,” J. Biomech., 30, pp. 235–241.
Shin,  D., Lin,  J. H., Agrawal,  C. M., and Athanasiou,  K. A., 1998, “Zonal Variations in Micro-Indentation Properties of Articular Artilage,” Trans. Annu. Meet. — Orthop. Res. Soc., 23, p. 903.
Wong,  M., Jurvelin,  J. S., Ponticiello,  M., Tammi,  M., Kovanen,  V., and Hunziker,  E. B., 1998, “Simultaneous Determination of Poisson’s Ratio and Elastic Modulus of Mature and Immature Cartilage,” Trans. Annu. Meet. — Orthop. Res. Soc., 23, p. 489.
Chang,  D. G., Lottman,  L. M., Chen,  A. C., Schinagl,  R. M., Albrecht,  D. R., Pedowitz,  R. A., Brossmann,  J., Frank,  L. R., and Sah,  R. L.-Y., 1999, “The Depth-Dependent, Multi-Axial Properties of Aged Human Patellar Cartilage in Tension,” Trans. Annu. Meet. — Orthop. Res. Soc., 24, p. 655.
Elliott,  D. M., Kydd,  S. R., Perry,  C. H., and Setton,  L. A., 1999, “Direct Measurement of Poisson’s Ratio of Human Articular Cartilage in Tension,” Trans. Annu. Meet. — Orthop. Res. Soc., 24, p. 649.
Huang,  C.-Y., Stankiewiecz,  A., Ateshian,  G. A., Flatow,  E. L., Bigliani,  L. U., and Mow,  V. C., 1999, “Anisotropy, Inhomogeneity, and Tension-Compression Nonlinearity of Human Glenohumeral Cartilage in Finite Deformation,” Trans. Annu. Meet. — Orthop. Res. Soc., 24, p. 95.
Narmoneva,  D. A., Wang,  J. Y., and Setton,  L. A., 1999, “Nonuniform Swelling-Induced Residual Strains in Articular Cartilage,” J. Biomech., 32, pp. 401–408.
Soltz,  M. A., Palma,  C., Barsoumian,  S., Wang,  C. C.-B., Hung,  C. T., and Ateshian,  G. A., 1999, “Multi-Axial Loading of Bovine Articular Cartilage in Unconfined Compression,” Trans. Annu. Meet. — Orthop. Res. Soc., 24, p. 888.
Wang,  C. C.–B., Soltz,  M. A., Mauck,  R. L., Valhmu,  W. B., Ateshian,  G. A., and Hung,  C. T., 2000, “Comparison of Equilibrium Axial Strain Distributions in Articular Cartilage Explants and Cell-Seeded Alginate Disks under Unconfined Compression,” Trans. Annu. Meet. — Orthop. Res. Soc., 25, p. 131.
Wang,  C. C.-B., Guo,  X. Z., Sun,  D., Mow,  V. C., Ateshian,  G. A., and Hung,  C. T., 2002, “The Functional Environment of Chondrocytes within Cartilage Subject to Compressive Loading: A Theoretical and Experimental Approach,” Biorheology, 39, pp. 11–25.
Chen,  S. S., and Sah,  R. L.-Y., 2001, “Contribution of Collagen Network and Fixed Charge to the Confined Compression Modulus of Articular Cartilage,” Trans. Annu. Meet. — Orthop. Res. Soc., 26, p. 426.
Matyas,  J., Young,  D., Hulme,  P., and Duncan,  N., 2001, “Zonal Distribution of Articular Cartilage Compressive Strain in a Model of Early Experimental Osteoarthritis,” Trans. Annu. Meet. — Orthop. Res. Soc., 26, p. 128.
Rieppo,  J., Laasanen,  M. S., Korhonen,  R. K., Toyras,  J., Nieminen,  M. T., Hirvonen,  J., Helminen,  H. J., and Jurvelin,  J. S., 2001, “Depth-Dependent Mechanical Properties of Bovine Patellar Cartilage,” Trans. Annu. Meet. — Orthop. Res. Soc., 26, p. 440.
Chu,  T. C., Ranson,  W. F., Sutton,  M. A., and Peters,  W. H., 1985, “Applications of Digital Image Correlation Techniques to Experimental Mechanics,” Exp. Mech., 25, pp. 232–244.
Sutton,  M. A., Cheng,  M., Petters ,  W. H., Chao,  Y. J., and McNeill,  S. R., 1986, “Application of an Optimized Digital Correlation Method to Planar Deformation Analysis,” Image Vis. Comput., 4, pp. 143–150.
McNeill,  S. R., Peters,  W. H., and Sutton,  M. A., 1987, “Estimation of Stress Intensity Factor by Digital Image Correlation,” Eng. Fract. Mech., 28, pp. 101–112.
Sutton,  M. A., and Chao,  Y. J., 1988, “Measurement of Strains in a Paper Tensile Specimen Using Computer Vision Digital Image Correlation,” Tappi J., 70, pp. 153–156.
Bruck,  H. A., McNeill,  S. R., Sutton,  M. A., and Petters ,  W. H., 1989, “Digital Image Correlation Using Newton-Raphson Method of Partial Differential Correction,” Exp. Mech., 46, pp. 261–267.
Russell,  S. S., and Sutton,  M. A., 1989, “Strain-Field Analysis Acquired Through Correlation of X-Ray Radiographs of a Fiber-Reinforced Composite Laminate,” Exp. Mech., 46, pp. 237–240.
Bay,  B. K., 1995, “Texture Correlation: A Method for the Measurement of Detailed Strain Distributions within Trabecular Bone,” J. Orthop. Res., 13, pp. 258–267.
Gonzalez,  J., and Knauss,  W. G., 1998, “Strain Inhomogeneity and Discontinuous Crack Growth in a Particulate Composite,” J. Mech. Phys. Solids, 46, pp. 1981–1995.
Bastawros,  A.-F., Bart-Smith,  H., and Evans,  A. G., 2000, “Experimental Analysis of Deformation Mechanisms in a Closed-Cell Aluminum Alloy Foam,” J. Mech. Phys. Solids, 48, pp. 301–322.
Bey,  M. J., and Soslowsky,  L. J., 2000, “Two-Dimensional Intratendinous Strains of the Human Rotator Cuff: Technique and Preliminary Results,” Trans. Annu. Meet. — Orthop. Res. Soc., 25, p. 405.
Soltz,  M. A., and Ateshian,  G. A., 2000, “A Conewise Linear Elasticity Mixture Model for the Analysis of Tension-Compression Nonlinearity in Articular Cartilage,” J. Biomech. Eng., 122, pp. 576–586.
Soulhat,  J., Buschmann,  M. D., and Shirazi-Adl,  A., 1999, “A Fibril-Network-Reinforced Biphasic Model of Cartilage in Unconfined Compression,” J. Biomech. Eng., 121, pp. 340–347.
Fung, Y. C., 1965, Foundations of Solid Mechanics, Prentice Hall Inc., Englewood Cliffs.
Lancaster, P., and Salkauskas, K., 1986, Curve and Space Fitting: An Introduction, Academic Press, London.
Kelley, C. T., 1999, Iterative Methods for Optimization, Society for Industrial and Applied Mathematics, Philadelphia.
Reinsch,  C. H., 1967, “Smoothing by Spline Functions,” Numerische Mathematik, 10, pp. 177–183.
Wahba,  G., 1975, “Smoothing Noisy Data with Spline Functions,” Numerische Mathematik, 24, pp. 383–393.
Woltring,  H. J., 1985, “An Optimal Smoothing and Derivative Estimation from Noisy Displacement Data in Biomechanics,” Human Movement Science, 4, pp. 229–245.
Wahba, G., 1986, “Multivariate Thin Plate Spline Smoothing with Positivity and Other Linear Inequality Constraints,” Statistical Image Processing and Graphics, E. J. Wegman, and DePriest, D. J., eds., Dekker, New York, pp. 275–289.
Dohrmann,  C. R., Busby,  H. R., and Trujillo,  D. M., 1988, “Smoothing Noisy Data Using Dynamic Programming and Generalized Cross-Validation,” J. Biomech. Eng., 110, pp. 37–41.
Ateshian,  G. A., 1993, “A B-Spline Least-Squares Surface-Fitting Method for Articular Surface of Diarthrodial Joints,” J. Biomech. Eng., 115, pp. 366–373.
Bates,  D. M., Lindstrom,  M. J., Wahba,  G., and Yandell,  B. S., 1987, “GCVpack-Routines for Generalized Cross Validation,” Communication of Statistics, 16, pp. 263–297.
Craven,  P., and Wahba,  G., 1979, “Smoothing Noisy Data with Spline Functions,” Numerische Mathematik, 31, pp. 377–403.
Duchon, J., 1976, “Splines Minimizing Rotation-Invariant Semi-Norms in Sobolev Spaces,” Constructive Theory of Functions of Several Variables, W. Schempp, and Zeller, K., eds., Springer-Verlag, New York.
Hill,  D. L., Batchelor,  P. G., Holden,  M., and Hawkes,  D. J., 2001, “Medical Image Registration,” Phys. Med. Biol., 46, pp. R1–45.
Wang,  C. C.-B., and Mow,  V. C., 1998, “Inhomogeneity of Aggregate Modulus Affects Cartilage Compressive Stress-Relaxation Behavior,” Trans. Annu. Meet. — Orthop. Res. Soc., 23, p. 481.
Sun,  D. N., Gu,  W. Y., Guo,  X. E., Lai,  W. M., and Mow,  V. C., 1998, “The Influence of Inhomogeneous Fixed Charge Density of Cartilage Mechano-Electrochemical Behaviors,” Trans. Annu. Meet. — Orthop. Res. Soc., 23, p. 484.
Wang,  C. C.-B., Hung,  C. T., and Mow,  V. C., 2000, “Analysis of the Effects of Depth-Dependent Aggregate Modulus on Articular Cartilage Stress-Relaxation Behavior in Compression,” J. Biomech., 34, pp. 75–84.
Sutton,  M. A., Babai,  M., Jang,  J., and McNeill,  S. R., 1988, “Effects of Subpixel Image Restoration on Digital Correlation Error Estimates,” Opt. Eng., 27, pp. 870–877.
Akizuki,  S., Mow,  V. C., Muller,  F., Pita,  J. C., Howell,  D. S., and Manicourt,  D. H., 1986, “Tensile Properties of Human Knee Joint Cartilage: I. Influence of Ionic Concentrations, Weight Bearing and Fibrillation on the Tensile Modulus,” Trans. Annu. Meet. — Orthop. Res. Soc., 4, pp. 379–392.
Ateshian,  G. A., Warden,  W. H., Kim,  J. J., Grelsamer,  R. P., and Mow,  V. C., 1997, “Finite Deformation Biphasic Material Properties of Bovine Articular Cartilage from Confined Compression Experiments,” J. Biomech., 30, pp. 1157–1164.
Athanasiou,  K. A., Rosenwasser,  M. P., Buckwalter,  J. A., Malinin,  T. I., and Mow,  V. C., 1991, “Interspecies Comparisons of in Situ Intrinsic Mechanical Properties of Distal Femoral Cartilage,” J. Orthop. Res., 9, pp. 330–340.
Ateshian,  G. A., Wang,  H., and Lai,  W. M., 1998, “The Role of Interstitial Fluid Pressurization and Surface Porosities on the Boundary Friction of Articular Cartilage,” J. Tribol., 120, pp. 241–248.
Bursac,  P. M., Obitz,  T. W., Eisenberg,  S. R., and Stamenovic,  D., 1999, “Confined and Unconfined Stress Relaxation of Cartilage: Appropriateness of a Transversely Isotropic Analysis,” J. Biomech., 32, pp. 1125–1130.
Wang, C. C.-B., Chahine, N. O., Kelly, T. N., Lai, W. M., Hung, C. T., and Ateshian, G. A., 2001, “The Strain-Softening of Bovine Articular Cartilage under Infinitesimal Deformation in Unconfined Compression,” Advance of Bioengineering, ASME BED, 51 , Abstract# 23061.
Bursac,  P. M., McGrath,  C. V., Eisenberg,  S. R., and Stamenovic,  D., 2000, “A Microstructural Model of Elastostatic Properties of Articular Cartilage in Confined Compression,” J. Biomech. Eng., 122, pp. 347–353.
Wang, C. C.-B., Chahine, N. O., Kelly, T. N., Valhmu, W. B., Hung, C. T., and Ateshian, G. A., 2001, “Optical Determination of Anisotropic Material Properties of Bovine Articular Cartilage in Compression,” Advance of Bioengineering, ASME BED, 50 , pp. 729–730.

Figures

Grahic Jump Location
Images of cartilage sample surface before (a, c) and after loading (b, d). All images were taken for the same sample using either fluorescence (a, b) or transmitted light (c, d) microscopy. The frames in the figure illustrate the template or subset used in optimized DIC.
Grahic Jump Location
Olympus IX-70 inverted microscope and the custom unconfined compression loading device.
Grahic Jump Location
The effects of template size on the optimized DIC procedures are presented in (a). A 40×40 pixel template size represents a good compromise between the needs to achieve the desired accuracy and efficiency. Measured (the dots) and superimposed (the meash) axial displacement and displacement gradient for numerical experiment with quadratic displacement function are presented in (b) and (c). The shaded surface in (b) represents the thin-plate spline smoothing (TPSS) surface of the measured results; the surface in (c) is generated from the derivation of the TPSS surface. All dimensions in the figure are pixels unless otherwise specified.
Grahic Jump Location
Displacement fields measured from a typical cartilage sample surface using either fluorescence (○) or transmitted light (+) microscopy. The shaded surfaces are the TPSS surface for the measured displacements. There are two sets of surfaces presented in the figure: one set of surfaces are the smoothed surfaces for results measured from fluorescent images and the other from transmitted light images. Clearly they correspond very well to each other.
Grahic Jump Location
The axial strains measured using optimized DIC (the dots) and calculated from the smooth fitting spline (the surface).
Grahic Jump Location
The strain fields inside a typical cartilage specimen under 5, 10, and 15% compression.
Grahic Jump Location
The depth-dependent apparent properties determined for 21 specimens at 10, 15 and 25% compression. Z=0 corresponds to the articular surface.
Grahic Jump Location
The average apparent properties determined from platen-to-platen measurements for all 21 specimens at 5, 10, 15, 25% compression. Statistics were performed using one-way ANOVA and Tukey HSD post hoc tests.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In