0
TECHNICAL PAPERS

Linear Poroelastic Cancellous Bone Anisotropy: Trabecular Solid Elastic and Fluid Transport Properties

[+] Author and Article Information
Sean S. Kohles

Kohles Bioengineering, 1731 SE 37th Ave, Portland, OR 97214-5135Department of Mechanical Engineering, Oregon State University, Corvallis, OR

Julie B. Roberts

TEI Biosciences, Inc., 7 Elkins St, Boston, MA 02127

J Biomech Eng 124(5), 521-526 (Sep 30, 2002) (6 pages) doi:10.1115/1.1503374 History: Received July 01, 2001; Revised June 01, 2002; Online September 30, 2002
Copyright © 2002 by ASME
Your Session has timed out. Please sign back in to continue.

References

Carter,  D. R. and Hayes,  W. C., 1977, “The Compressive Behavior of Bone as a Two-Phase Porous Structure,” J. Bone Jt. Surg., 59A, pp. 954–962.
Simkin,  P. A., Houglum,  S. J., and Pickerell,  C. C., 1985a, “Compliance and Viscoelasticity of Canine Shoulders Loaded in vitro,” J. Biomech., 18, p. 735–743.
Keaveny,  T. M., and Hayes,  W. C., 1993, “A 20-Year Perspective on the Mechanical Properties of Trabecular Bone,” ASME J. Biomech. Eng., 115, pp. 534–542.
Ochoa,  J. A., Sanders,  A. P., Kiesler,  T. W., Heck,  D. A., Toombs,  J. P., Brandt,  K. D., and Hillberry,  B. M., 1977, “In vivo Observations of Hydraulic Stiffening in the Canine Femoral Head,” ASME J. Biomech. Eng., 119, pp 103–108.
Arramon,  Y. P., and Cowin,  S. C., 1997, “Hydraulic Stiffening of Cancellous Bone,” Forma, 12, pp. 209–221.
Cowin,  S. C., 1999, “Bone poroelasticity,” J. Biomech., 32, pp. 217–238.
Mow,  V. C., Kuei,  S. C., and Lai,  W. L., 1980, “Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiments,” ASME J. Biomech. Eng., 102, pp. 73–84.
Ashman,  R. B., Rho,  J. Y., and Turner,  C. H., 1989, “Anatomical Variation of Orthotropic Elastic Moduli of the Proximal Tibia,” J. Biomech., 22(8–9), pp. 895–900.
Grimm,  M. J., and Williams,  J. L., 1997, “Measurements of Permeability in Human Calcaneal Trabecular Bone,” J. Biomech., 30(7), pp. 743–745.
Nauman,  E. A., Fong,  K. E., and Keaveny,  T. M., 1999, “Dependence of Intertrabecular Permeability on Flow Direction and Anatomic Site,” Ann. Biomed. Eng., 27, pp. 517–524.
Giesen,  E. B. W., Ding,  M., Dalstra,  M., van Eijden,  T. M. G. J., 2001, “Mechanical Properties of Cancellous Bone in the Human Mandibular Condyle are Anisotropic,” J. Biomech., 34(6), pp. 799–803.
McKelvie,  M. L., and Palmer,  S. B., 1991, “The Interaction of Ultrasound with Cancellous Bone,” Phys. Med. Biol., 36, pp. 1331–1340.
Tavakoli,  M. B., and Evans,  J. A., 1992, “The Effect of Bone Structure on Ultrasonic Attenuation and Velocity,” Ultrasonics, 30, pp. 389–395.
Hosokawa,  A., and Otani,  T., 1997, “Ultrasonic Wave Propagation in Bovine Cancellous Bone,” J. Acoust. Soc. Am., 101, pp. 558–562.
Williams,  J. L., and Lewis,  J. L., 1982, “Properties and an Anisotropic Model of Cancellous Bone from the Proximal Tibial Epiphysis,” J. Biomech. Eng., 104, pp. 50–56.
Williams,  J. L., and Johnson,  W. J. H., 1989, “Elastic Constants of Composites Formed from PMMA Bone Cement and Anisotropic Bovine Tibial Cancellous Bone,” J. Biomech., 22, pp. 673–682.
Pollack,  S. R., Petrov,  N., Salzstein,  R., Brankov,  G., and Blagoeva,  R., 1984, “An Anatomical Model for Streaming Potentials in Osteons,” J. Biomech., 17(8), pp. 627–636.
Wehrli,  F. W., Ford,  J. C., Chung,  H. W., Wehrli,  S. L., Williams,  J. L., Grimm,  M. J., Kugelmass,  S. D., and Jara,  H., 1993, “Potential Role of Nuclear Magnetic Resonance for the Evaluation of Trabecular Bone Quality,” Calcif. Tissue Int., 53, S162–S169.
Schemitsch,  E. H., Kowalski,  M. J., and Swiontkowski,  M. F., 1994, “Evaluation of a Laser Doppler Flowmetry Implantable Fiber System for Determination of Threshold Thickness for Flow Detection in Bone,” Calcif. Tissue Int., 55, pp. 216–222.
MacGinitie,  L. A., Stanley,  G. D., Bieber,  W. A., and Wu,  D. D., 1997,“Bone Streaming Potentials and Currents Depend on Anatomical Structure and Loading Orientation,” J. Biomech., 30(11–12), pp. 1133–1139.
Wang,  L., Cowin,  S. C., Weinbaum,  S., and Fritton,  S. P., 2000, “Modeling Tracer Transport in an Osteon Under Cyclic Loading,” Ann. Biomed. Eng., 28, pp. 1200–1209.
Bryant,  J. D., 1983, “The Effect of Impact on the Marrow Pressure of Long Bone in vitro,” J. Biomech., 16, pp. 659–665.
Simkin,  P. A., Pickerell,  C. C., and Wallis,  W. J., 1985b, “Hydraulic Resistance in Bones of the Canine Shoulder,” J. Biomech., 18, pp. 657–663.
Downey,  D. J., Simkin,  P. A., and Taggart,  R., 1988, “The Effect of Compressive Loading on Intraosseous Pressure in the Femoral Head in vitro,” J. Bone Jt. Surg., 70A, pp. 871–877.
Ochoa,  J. A., Sanders,  A. P., Heck,  D. A., and Hillberry,  B. M., 1991, “Stiffening of the Femoral Head Due to Intertrabecular Fluid and Intraosseous Pressure,” J. Biomech. Eng., 113, pp. 259–262.
Kohles,  S. S., and Vanderby,  R., 1997, “Thermographic Strain Analysis of the Proximal Canine Femur,” Med. Eng. Phys., 19, pp. 262–266.
Dillman,  R. M., Roer,  R. D., and Gay,  D. M., 1991, “Fluid Movement in Bone: Theoretical and Empirical,” J. Biomech., 24, pp. S163–S177.
Hui,  P. W., Leung,  P. C., and Sher,  A., 1996,“Fluid Conductance of Cancellous Bone Graft as a Predictor for Graft-Host Interface Healing,” J. Biomech., 29, pp. 123–132.
Cowin,  S. C., 1986, “Wolff’s Law of Trabecular Architecture at Remodeling Equilibrium,” J. Biomech. Eng., 108, pp. 83–88.
Young, D. W., and Kohles, S. S., 2001, “Experimental Determination of bone Anisotropic Poroelasticity Parameters,” Proc. 27th Annual Northeast Bioengineering Conference, 27 , pp. 41–42.
Johnson, A. T., 1999, Biological Process Engineering: An Analogical Approach to Fluid Flow, Heat Transfer, and Mass Transfer Applied to Biological Systems, John Wiley & Sons, Inc., New York.
Thompson,  M., and Willis,  J. R., 1991, “Reformation of the Equations of Anisotropic Poroelasticity,” ASME J. Appl. Mech., 58, pp. 612–616.
Kohles,  S. S., Roberts,  J. B., Upton,  M. L., Wilson,  C. G., Schlichting,  A. L., Cooper,  L. J., Thibeault,  R. A., and Bonassar,  L. J., 2000, “Anisotropic Elastic and Transport Properties of Cancellous Bone,” Ann. Biomed. Eng., 28(S1), p. S6.
Roberts, J. B., 2000, “Anisotropic Elastic and Transport Properties of Cancellous Bone,” Masters Thesis, Worcester Polytechnic Institute.
Kohles,  S. S., Roberts,  J. B., Upton,  M. L., Wilson,  C. G., Bonassar,  L. J., and Schlichting,  A. L., 2001, “Direct Perfusion Measurements of Cancellous Bone Anisotropic Permeability,” J. Biomech., 34(11), pp. 1197–1202.
Scheidegger, A. E., 1974, The Physics of Flow Through Porous Media, University of Toronto Press, Toronto, Canada.
Kessler, D. P., and Greenkorn, R. A., 1999, Momentum, Heat, and Mass Transfer Fundamentals, Marcel Dekker, Inc., NY.
Kohles,  S. S., Bowers,  J. R., Vailas,  A. C., and Vanderby,  R., 1997, “Ultrasonic Wave Velocity Measurement in Small Polymeric and Cortical Bone Specimens,” J. Biomech. Eng., 119(3), pp. 232–236.
Ashman,  R. B., Corin,  J. D., and Turner,  C. H., 1987, “Elastic Properties of Cancellous Bone: Measurement by an Ultrasonic Technique,” J. Biomech., 20(10), pp. 979–986.
Williams,  J. L., 1992, “Ultrasonic Wave Propagation in Cancellous and Cortical Bone: Prediction of Some Experimental Results by Biot’s Theory,” J. Acoust. Soc. Am., 91(2), pp. 1106–1112.
Njeh,  C. F., Hodgskinson,  R., Currey,  J. D., and Langton,  C. M., 1996, “Orthogonal Relationships Between Ultrasonic Velocity and Material Properties of Bovine Cancellous Bone,” Med. Eng. Phys., 18(5), pp. 373–381.
Ashman,  R. B., and Rho,  J. Y., 1998, “Elastic Modulus of Trabecular Bone Material,” J. Biomech., 21(3), pp. 177–181.
Rho,  J. Y., Ashman,  R. B., and Turner,  C. H., 1993, “Young’s Moduli of Trabecular and Cortical Bone Material: Ultrasonic and Microtensile Measurements,” J. Biomech., 26, pp. 111–119.
van Rietbergen,  B., 2001, “Micro-FE Analyses of Bone: State of the Art,” Adv. Exp. Med. Biol., 496, 21–30.
Bourne, B. C., Morgan, T. G., Paschalis, E. P., and van der Meulen, M. C., 2002, “Cancellous Bone Anisotropy Arises from both Architecture and Material Properties,” Trans. 48th Annual Orthopaedic Research Society Meeting, 27 , p. 558.
Homminga, J., McCreadie, B. R., Ciarelli, T. E., Weinans, H., Goldstein, S. A., and Huiskes, R., 2002, “Trabecular Bone Mechanical Properties from Normals and Patients with Hip Fractures Differ on the Apparent Level, Not on the Tissue Level,” Trans. 48th Annual Orthopaedic Research Society Meeting, 27 , p. 570.
Niebur, G., Yeh, O. C., and Keaveny, T. M., 2002, “Damage Evolution in Trabecular Bone is Anisotropic,” Trans. 48th Annual Orthopaedic Research Society Meeting, 27 , p. 323.
Miller,  Z., Fuchs,  M. B., and Arcan,  M., 2002, “Trabecular Bone Adaptation with an Orthotropic Material Model,” J. Biomech., 35(2), pp. 247–256.
Kohles, S. S., Roberts, J. G., Upton, M. L., Wilson, C. G., Bonassar, L. J. Schlichting, A. L. 2001, “Anisotropic Elastic and Transport Properties of Cancellous Bone,” Trans. 47th Annual Orthopaedic Research Society Meeting, 26 , p. 516.
Lim,  T. H., and Hong,  J. H., 2000, “Poroelastic Properties of Bovine Vertebral Trabecular Bone,” J. Orthop. Res., 18(4), pp. 671–677.
Keaveny,  T. M., Wachtel,  E. F., Zadesky,  S. P., and Arramon,  Y. P., 1999, “Application of the Tsai-Wu Quadratic Multiaxial Failure Criterion to Bovine Trabecular Bone,” ASME J. Biomech. Eng., 121(1), pp. 99–107.
Kohles,  S. S., and Martinez,  D. A., 2000, “Elastic and Physicochemical Relationships in Cortical Bone,” J. Biomed. Mater. Res., 49(4), pp. 479–488.

Figures

Grahic Jump Location
The relationship between anisotropic, apparent elastic moduli and transport properties in bovine cancellous bone. The plots show: A) the mean and error values (standard deviation, sd, or standard error of the mean, sem) for modulus and permeability; B) the orthotropic data for all samples (n=20); and C) the linear trendlines with coefficients that are statistically different than zero (p<0.5) for the three orientations (when combined, R2=0.0405). Permeability values were originally presented in Kohles et al. 35.
Grahic Jump Location
A graphical comparison between porosity as a predictor of: A) apparent elastic moduli and B) permeability. The Kozeny equation was fit to the permeability versus porosity data as a means to empirically describe this relationship (C=0.022, equation 4).
Grahic Jump Location
The relationship between anisotropic, apparent elastic moduli and material stiffness coefficients. A linear regression applied to the combined data results in a positive correlation with R2=0.3172.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In