0
TECHNICAL PAPERS

Influence of Connection Geometry and SVC-IVC Flow Rate Ratio on Flow Structures within the Total Cavopulmonary Connection: A Numerical Study

[+] Author and Article Information
Yottana Khunatorn

Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309-0427

Shankar Mahalingam

Department of Mechanical Engineering, University of California, Riverside, CA 92521

Curt G. DeGroff

Cardiovascular Flow Research Laboratory, The Children’s Hospital/University of Colorado Health Sciences Center, Denver, CO 80218

Robin Shandas

Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309-0427Cardiovascular Flow Research Laboratory, The Children’s Hospital/University of Colorado Health Sciences Center, Denver, CO 80218

J Biomech Eng 124(4), 364-377 (Jul 30, 2002) (14 pages) doi:10.1115/1.1487880 History: Received January 01, 2001; Revised April 01, 2002; Online July 30, 2002
Copyright © 2002 by ASME
Your Session has timed out. Please sign back in to continue.

References

Fontan,  F., and Baudet,  E., 1971, “Surgical Repair of Tricuspid Artesia,” Thorax, 26, pp. 240–248.
de Leval,  M. R., 1998, “The Fontan Circulation,” Pediatr. Cardiol., 19, pp. 316–320.
de Leval,  M. R., Kilner,  P., Gewillig,  M., and Bull,  C., 1988, “Total Cavopulmonary Connection: A Logical Alternative to Atriopulmonary Connection for Complex Fontan Operations,” J. Thorac. Cardiovasc. Surg., 96, pp. 682–695.
Sharma,  S., Goudy,  S., Walker,  P., Panchal,  S., Ensley,  A., Kanter,  K., Tam,  V., Fyfe,  D., and Yoganathan,  A. P., 1996, “In Vitro Flow Experiments for Determination of Optimal Geometry of Total Cavopulmonary Connection for Surgical Repair of Children with Functional Single Ventricle,” J. Am. Coll. Cardiol., 27, pp. 1264–1269.
Kim,  Y. H., Walker,  P. G., Fontaine,  A. A., Panchal,  S., Ensley,  A. E., Oshinski,  J., Sharma,  S., Ha,  B., Lucas,  C. L., and Yoganathan,  A. P., 1995, “Hemodynamics of the Fontan Connection: An In-Vitro Study,” J. Biomech. Eng., 117, pp. 423–428.
Sievers,  H. H., Gerdes,  A., and Pfister,  G., 1998, “Superior Hydrodynamics of a Modified Cavopulmonary Connection for the Norwood Operation,” Ann. Thorac. Surg., 65, pp. 1741–1745.
Lardo,  A. C., Webber,  S. A., Iyengar,  A., del Nido,  P. J., Friehs,  I., and Cape,  E. G., 1999, “Bidirectional Superior Cavopulmonary Anastomosis Improves Mechanical Efficiency in Dilated Atriopulmonary Connections,” Thorac. Cardiovasc. Surg., 118, pp. 681–691.
Low,  H. T., Chew,  Y. T., and Lee,  CN., 1993, “Flow Studied on Atriopulmonary and Cavopulmonary Connections of the Fontan Operations for Congenital Heart Defects,” Ann. Biomed. Eng., 15, pp. 303–307.
Migliavacca,  F., de Leval,  M. R., Dubini,  G., and Pietrabissa,  R., 1996, “A Computational Pusatile Model of the Bidirectional Cavopulmonary Anastomosis: The Influence of Pulmonary Forward Flow,” J. Biomech. Eng., 118, pp. 520–528.
Dubini,  G., de Leval,  M. R., Pietrabissa,  R., Montevecchi,  F. M., and Fumero,  R., 1996, “A Numerical Fluid Mechanical Study of Repaired Congenital Heart Defects. Application to the Total Cavopulmonary Connection,” J. Biomech., 29, pp. 111–121.
de Leval,  M. R., Dubini,  G., Migliavacca,  F., Jalali,  H., Camporini,  G., Redington,  A., and Pietrabissa,  R., 1996, “Use of Computational Fluid Dynamics in Design of Surgical Procedures: Application to the Study of Competitive Flows in Cavopulmonary Connections,” J. Thorac. Cardiovasc. Surg., 111, pp. 502–513.
Van Haesdonck,  J. M., Mertens,  L., Sizaire,  R., Montas,  G., Purnode,  B., Daenen,  W., Crochet,  M., and Gewillig,  M., 1995, “Comparison by Computerized Numeric Modeling of Energy Losses in Different Fontan Connections,” Circulation, 92, pp. II322–II326.
Lardo,  A. C., Webber,  S. A., Friehs,  I., del Nido,  P. J., and Cape,  E. G., 1999, “Fluid Dynamic Comparison of Intra-Atrial and Extracadiac Total Cavopulmonary Connections,” J. Thorac. Cardiovasc. Surg., 117, pp. 697–704.
Morgan,  V. L., Graham,  T. P., Roselli,  R. J., and Lorenz,  C. H., 1998, “Alternations in Pulmonary Artery Flow Patterns and Shear Stress Determined with Three-Dimensional Phase-Contrast Magnetic Resonance Imaging in Fontan Patients,” J. Thorac. Cardiovasc. Surg., 116, pp. 294–304.
Fogel,  M. A., Weinberg,  P. M., Hoydu,  A., Hubbard,  A., Rychik,  J., Jacobs,  M., Fellows,  K. E., and Haselgrove,  J., 1997, “The Nature of Flow in the Systemic Venous Pathway Measured by Magnetic Resonance Blood Tagging in Patients Having the Fontan Operation,” J. Thorac. Cardiovasc. Surg., 114, pp. 1032–1041.
Be’eri,  E., Maier,  S. E., Landzberg,  M. J., Chung,  T., and Geva,  T., 1998, “In Vivo Evaluation of Fontan Pathway Flow Dynamics by Multidimensional Phase-Velocity Magnetic Resonance Imaging,” Circulation, 98, pp. 2873–2882.
Shirai,  L. K., Rosenthal,  D. N., Reitz,  B. A., Robbins,  R. C., and Dubin,  A. M., 1998, “Arrhythmias and Thromboembolic Complications after the Extracardiac Fontan Operation,” J. Thorac. Cardiovasc. Surg., 115, pp. 499–505.
McDonald, D. A., 1974, Blood Flow in Arteries, Camelot Press Ltd., South Hampton.
CFD Research Corporation, 1999, CFD-ACE Theory Manual version 5.0, CFD Research Corporation, AL.
Makhijani,  V. B., Yang,  H. Q., Singhal,  A. K., and Hwang,  N. C., 1994, “An Experimental-numerical Analysis of MHV Cavitation: Effects of Leaflet Squeezing and Rebound,” J. Heart Valve Dis., 3, pp. 35–48.
Makhijani,  V. B., Siegel,  J. M., and Hwang,  N. C., 1996, “Numerical Analysis of Squeeze-flow in Tilting Disc Mechanical Heart Valves,” J. Heart Valve Dis., 5, pp. 97–103.
Makhijani,  V. B., Yang,  H. Q., Dionne,  P. J., and Thubrikar,  M. J., 1997, “Three-dimensional Coupled Fluid-structure Simulation of Pericardial Bioprosthetic Aortic Valve Function,” ASAIO J., 43, pp. M387–M392.
Sukumar,  R., Athavale,  M. M., Makhijani,  V. B., and Przekwas,  A. J., 1996, “Application of Computational Fluid Dynamics Techniques to Blood Pumps,” Artif. Organs, 20, pp. 529–533.
Bergman, H. L., Siegel, J. M., Oshinski, J. N., Pettigrew, R. I., and Ku, D. N., 1996, “Computational Simulation of Magnetic Resonance Angiograms in Stenotic Vessels: Effect of Stenosis Severity,” Advances in Bioengineering, S. Rastegar, ed., ASME, New York, 33 , 295–296.
DeGroff,  C. G., Shandas,  R., and Valdes-Cruz,  L. M., 1998, “Analysis of the Effect of Flow Rate on the Doppler Continuity Equation for Stenotic Orifice Area Calculations: A Numerical Study,” Circulation, 97, pp. 1597–1605.
DeGroff,  C. G., Baptista,  A. M., and Sahn,  D. J., 1998, “Insights into the Proximal Flow Convergence Method Using 2D Finite Elements,” J. Am. Soc. Echocardiogr, 11, pp. 809–818.
DeGroff,  C. G., Shandas,  R., and Valdes-Cruz,  L. M., 2000, “Accuracy of the Bernoulli Equation for Estimate of Pressure Gradient Across BT Shunts: An In Vitro and Numerical Study,” Pediatr. Cardiol., , 21, pp. 439–447.
DeGroff,  C. G., Shandas,  R., Kwon,  J., and Valdes-Cruz,  L. M., 2000, “Utility of the Proximal Jet Width in the Assessment of Regurgitant and Stenotic Orifices-Effect of Low Velocity Filter and Comparison to Actual Vena Contracta Width: An In Vitro and Numerical Study,” European Journal of Echocardiography,, 1, pp. 42–54.
Shandas,  R., DeGroff,  C. G., Kwon,  J., and Valdes-Cruz,  L. M., 1997, “Vortex Structures Within the Modified Fontan Connection Play a Primary Role in Energy Loss: In-vitro Digital Particle Image Velocimetry Studies,” J. Am. Coll. Cardiol., 29, pp. 427A.
Carlton,  J., DeGroff,  C. G., Shandas,  R., and Valdes-Cruz,  L. M., 2000, “Effect of Changing Fluid Dynamics with Aging On the Optimal Total Cavo-Pulmonary Connection,” Circulation, 102, pp. II–744.
Hellums,  J. D., 1994, “1993 Whitaker Lecture: Biorheology in Thrombosis Research,” Ann. Biomed. Eng., 22, pp. 445–455.
Baumgartner,  H. R., 1973, “The Role of Blood Flow in Platelet Adhesion, Fibrin Deposition, and Formation of Mural Thrombi,” Microvasc. Res., 5, pp. 167–179.
Turritto, V. T., Baumgartner, H. R., 1987, Platelet-Surface Interactions, Hemostasis and Thrombosis, R. Colman, et al., eds., Lippincott Company, Philadelphia, pp. 555–571.
Nerem,  R. M., 1992, “Vascular Fluid Mechanics, the Arterial Wall and Atherosclerosis,” J. Biomech. Eng., 114, pp. 274–282.
Hedrick,  M., Elkins,  R. C., Knott-Craig,  C. J., and Razook,  J. D., 1993, “Successful Thrombectomy for Thrombosis of the Right Side of the Heart after the Fontan Operation. Report of Two Cases and Review of the Literature,” Thorac. Cardiovasc. Surf., 105, pp. 297–301.
Gijsen,  F. J. H., van de Vosse,  F. N., and Janssen,  J. D., 1999, “The Influence of the Non-Newtonian Properties of Blood on the Flow in Large Arteries: Steady Flow in a Carotid Bifurcation Model,” J. Biomech., 32, pp. 601–608.

Figures

Grahic Jump Location
Schematic drawing and grid structure of the TCPC numerical model. The SVC-IVC offset distance and the connection angle indicated are the two main geometrical parameters.
Grahic Jump Location
Stress component transformation due to coordinate rotation
Grahic Jump Location
Velocity profiles and pressure distribution contours of Models 1 and 2 for the different SVC:IVC flow rate ratios. The velocity vectors are indicated by the arrows and pressure (N/m2) by the grayscale contours with scale as included in the figure. (a) SVC:IVC=50:50 (b) SVC:IVC=33:66 (c) SVC:IVC 25:75.
Grahic Jump Location
Velocity profiles and pressure distribution contours of Model 3 and 4 for the different SVC:IVC flow rate ratios. (a) SVC:IVC=50:50 (b) SVC:IVC=33:66 (c) SVC:IVC 25:75.
Grahic Jump Location
The cross sectional velocity profiles and shear distributions for Model 1 at different SVC:IVC flow rate ratios. The velocity vectors are indicated by the arrows and shear stress contours (dynes/cm2) by the grayscale with scale as included in the figure.
Grahic Jump Location
(a) The cross sectional velocity profiles and shear distributions in the RPA for Model 2 at different SVC:IVC flow rate ratios. (b) The cross sectional velocity profiles and shear distributions in the LPA for Model 2 at different SVC:IVC flow rate ratios.
Grahic Jump Location
Cross sectional velocity profiles and shear distributions for Model 3 at different SVC:IVC flow rate ratios
Grahic Jump Location
Cross sectional velocity profiles and shear distributions for Model 4 at different SVC:IVC flow rate ratios

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In