Damaged-Bone Adaptation Under Steady Homogeneous Stress

[+] Author and Article Information
S. Ramtani, M. Zidi

Université Paris Val de Marne, Faculté des Sciences et Technologie, Laboratoire de Biomécanique, Biomatériaux Osseux et Articulaires/CNRS ESA 7052, 61, avenue du général De Gaulle, 94010 Créteil cédex, France

J Biomech Eng 124(3), 322-327 (May 21, 2002) (6 pages) doi:10.1115/1.1467918 History: Received July 14, 2000; Revised January 28, 2002; Online May 21, 2002
Copyright © 2002 by ASME
Your Session has timed out. Please sign back in to continue.


Wolff, J. L., 1986, The law of bone remodeling, Springer, Berlin.
Huiskes, R., 1997, “Simulation of self-organization and functional adaptation in bone,” Springer-Verlag Berlin.
Lee, T. C., Noelke, L., McMahon, G. T., Mulville, J. P., and Taylor, D., 1998, “Functional adaptation in bone,” P. Pedersen and M. P. Bendsoe, eds., Synthesis in Bio Solid Mechanics, Kluwere Academic Publishers, Dortrecht.
Hart, R. T., and Davy, D. T., 1989, “Theories of Bone Modeling and Remodeling,” Chapter 11, Bone Mechanics, S. C. Cowin, ed., CRC Press.
Zidi,  M., Ramtani,  S., 1999, “Bone remodeling theory applied to the study of n unit-elements model,” J. Biomech., 32, pp. 743–747.
Frost,  H. M., 1960, “Presence of microscopic cracks in vivo in bone,” Bulletin of Henry Ford Hospital, 8, pp. 25–35.
Carter,  D. R., and Hayes,  W. C., 1977, “Compact bone fatigue damage-I. Residual strength and stiffness,” J. Biomech., 10, pp. 325–337.
Prendergast,  P. J., and Taylor,  D., 1994, “Prediction of bone adaptation using damage accumulation,” J. Biomech., 27, pp. 1067–1076.
Burr,  D. B., Martin,  R. B., Schaffler,  M. B., and Radin,  E. L., 1985, “Bone remodeling in response to in vivo fatigue microdamage,” J. Biomech., 18, pp. 189–200.
Burr,  D. B., Milgrom,  C., Boyd,  R. D., Higgins,  W. L., and Radinel,  G., 1990, “Experimental stress fractures of the tibia-biological and mechanical aetiology in rabbits,” J. Bone Jt. Surg., 72B, pp. 370–375.
Mori,  S., and Burr,  D. B., 1993, “Increased intracortical remodeling following fatigue damage,” Sumitomo Electr. Tech. Rev., 14, pp. 103–109.
Prendergast, P. J., and Huiskes, R., 1995. “Mathematical modeling of microdamage in bone remodelling and adaptation,” Bone Structure and Remodelling Recent Advances in Human Biology, A. Odgaard, H. Weinans, eds., World Scientific, Singapore Vol. 2, pp. 213–223.
Nicolella, D. P., 1998, “Smart Skeletons,” Technology Today, Southwest Research Institute.
Lee, T. C., 1997, Detection and accumulation of microdamage in bone, M.D. thesis, University of Dublin.
Burr,  D. B., Turner,  C. H., Naick,  P., Forwood,  M. R., and Pidaparti,  R., 1998, “En bloc staining of bone under load does not improve dye diffusion into microcracks,” J. Biomech., 31, pp. 285–288.
Fazzalari,  N. L., Forwood,  M. R., Manthey,  B. A., Smith,  K., and Holesik,  P., 1998, “Three-dimensional confocal images of microdamage in cancellous bone,” Bone, 23, pp. 373–378.
Carter,  D. R., 1984, “Mechanical loading histories and cortical bone remodeling,” Calcif. Tissue Int., 36, pp. 19–24.
Ramtani,  S., and Zidi,  M., 1999, “Damaged-bone remodeling theory: thermodynamical approach,” Mech. Res. Commun., 26, pp. 701–708.
Ramtani,  S., and Zidi,  M., 2001, “A theoretical model of the effect of continuum damage on a bone adaptation model,” J. Biomech., 34, pp. 471–479.
Kestin, J, 1986. “Metal plasticity as a problem of thermodynamics,” Proceedings of IUTAM Symposium on Thermomechanical coupling in solids, pp. 1–5.
Bridgman, P. W., 1961, The nature of thermodynamics, Harper.
Malvern, L. E., 1969. Introduction to the Mechanics of a Continuum Medium, Prentice-Hall, New Jersey.
Cowin,  S. C., and Hegedus,  D. M., 1976, “Bone remodeling I: Theory of adaptive elasticity,” J. Elast., 6, pp. 313–325.
Hegedus,  D. H., and Cowin,  S. C., 1976, “Bone remodeling II: Small strain adaptive elasticity,” J. Elast., 6, pp. 337–352.
Coleman,  B. D., 1964, “Thermodynamics of materials with memory,” Arch. Ration. Mech. Anal., 17, pp. 1–46.
Coleman,  B. D., Gurtin,  M., 1967, “Thermodynamics with internal variables,” J. Chem. Phys., 47, pp. 597–613.
Lehmann,  Th., 1989, “On the balance of energy and entropy at inelastic deformations of solid bodies,” Eur. J. Mech. A/Solids, 8, pp. 235–251.
Muschik, W., 1988. “Thermodynamical constitutive laws-outlines,” Constitutive Laws and Microstructure, Axelrad D. R. and Muschik W., eds, Springer-Verlag, Berlin, pp. 3–25.
Chaboche,  J. L., 1988, “Continuum damage mechanics. Part I, General concepts, Part II, Damage growth, crack initiation and crack growth,” ASME J. Appl. Mech., 55, pp. 233–247.
Murakami,  S., and Kamya,  K., 1997, “Constitutive and damage evolution equations of elastic-brittle materials based on irreversible thermodynamics,” Int. J. Mech. Sci., 39, pp. 473–486.
Cowin,  S. C., 1999, “Bone poroelasticity,” J. Biomech., 32, pp. 217–238.
Krajcinovic,  D., Fonseka,  G. U., 1981, “The continuum damage theory of brittle materials,” ASME J. Appl. Mech., Parts I and II, 48, pp. 809–824.
Knets, I. and Malmeister, A., 1975, “The deformability ans strength oh human compact bone tissue,” Mechanics of Biological Solids, Proceedings of the Euromech Colloquium 68, Varna, Bulgaria.
Wright,  T. M., and Hayes,  W. C., 1976, “Tensile testing of bone over a wide range of strain rates; effects of strain rate, microstructure and density,” Med. Biol. Eng., 14, pp. 671–679.
Firoozbakhsh,  K., and Cowin,  S. C., 1980, “Devolution of inhomogeneities in bone structure-Predictions of adaptive elasticity theory,” J. Biomech., 102, pp. 287–293.
Hart,  R. T., Davy,  D. T., and Heiple,  K. G., 1984, “A computational method for stress analysis of adaptive elastic materials with a view toward applications in strain induced bone remodeling,” ASME J. Biomech. Eng., 106, pp. 342–350.


Grahic Jump Location
Time remodeling constant τ versus steady homogeneous damage d
Grahic Jump Location
Temporal evolution e(t) for various values of damage d
Grahic Jump Location
(a) Axial strain evolution E33(t) for various values of damage d; (b) lateral strain evolution E22(t) for various values of damage d; (c) lateral strain evolution E11(t) for various values of damage d
Grahic Jump Location
Variation of Δe(t) for various values of damage d




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In