Experimental and Biphasic FEM Determinations of the Material Properties and Hydraulic Permeability of the Meniscus in Tension

[+] Author and Article Information
Michelle A. LeRoux

Department of Biomedical Engineering, Duke University, Durham, NC

Lori A. Setton

Department of Biomedical Engineering, Duke University, Durham, NCe-mail: setton@duke.edu

J Biomech Eng 124(3), 315-321 (May 21, 2002) (7 pages) doi:10.1115/1.1468868 History: Received August 28, 2001; Revised January 09, 2002; Online May 21, 2002
Copyright © 2002 by ASME
Your Session has timed out. Please sign back in to continue.


Mow, V. C., Ratcliffe, A., Chern, K. Y., and Kelly, M. A., 1992, “Structure and Function Relationships of the Menisci of the Knee,” Knee Meniscus: Basic and Clinical Foundations, V. C. Mow, S. P. Arnoczky, and D. W. Jackson, eds., Raven Press, Ltd.: New York. pp. 37–57.
Arnoczky, S. P., 1992, “Gross and Vascular Anatomy of the Meniscus and its Role in Meniscal Healing, Regeneration, and Remodeling,” Knee Meniscus: Basic and Clinical Foundations, V. C. Mow, S. P. Arnoczky, and D. W. Jackson, eds., Raven Press: New York. pp. 1–14.
Proctor,  C. S., Schmidt,  M. B., Whipple,  R. R., Kelly,  M. A., and Mow,  V. C., 1989, “Material Properties of the Normal Medial Bovine Meniscus,” J. Orthop. Res., 7, pp. 771–782.
Skaggs,  D. L., Warden,  W. H., and Mow,  V. C., 1994, “Radial Tie Fibers Influence the Tensile Properties of the Bovine Medial Meniscus,” J. Orthop. Res., 12, pp. 176–185.
Tissakht,  M., and Ahmed,  A. M., 1995, “Tensile Stress-Strain Characteristics of the Human Meniscal Material,” J. Biomech., 28, pp. 411–422.
Fithian,  D. C., Kelly,  M. A., and Mow,  V. C., 1990, “Material Properties and Structure-Function Relationships in the Menisci,” Clin. Orthop. Relat. Res., 252, pp. 19–31.
Mansour,  J. M., and Mow,  V. C., 1976, “The Permeability of Articular Cartilage Under Compressive Strain and at High Pressures,” J. Bone Jt. Surg., Am. Vol., 58, pp. 509–516.
Joshi,  M., Suh,  J., Marui,  T., and Woo,  S., 1995, “Interspecies Variation of Compressive Biomechanical Properties of the Meniscus,” J. Biomed. Mater. Res., 29(7), pp. 823–828.
Aspden,  R. M., 1985, “A Model for the Function and Failure of the Meniscus,” Med. Eng. Phys., 14, pp. 119–122.
Schreppers,  G. J. M., Sauren,  A. A. H. J., and Huson,  A., 1990, “A Numerical Model of the Load Transmission in the Tibio-Femoral Contact Area,” Proc. Inst. Mech. Eng., IMechE Conf., 204, pp. 53–59.
Spilker,  R. L., Suh,  J. K., and Mow,  V. C., 1992, “A Finite Element Analysis of the Indentation Stress-Relaxation Response of Linear Biphasic Articular Cartilage,” ASME J. Biomech. Eng., 114(2), pp. 191–201.
Tissahkt,  M., Marchand,  F., and Ahmed,  A. M., 1991, “Non-Linear Finite Element Analysis of the Knee Menisci: A Composite Fiber-Reinforced Model,” Trans. Orthop. Res. Soc., 16, pp. 294.
Gu,  W. Y., Mao,  X. G., Foster,  R. J., Weidenbaum,  M., Mow,  M., and Rawlins,  B. A., 1999, “The Anisotropic Hydraulic Permeability of Human Lumbar Anulus Fibrosus: Influence of Age, Degeneration, and Water Content,” Spine, 24, pp. 2449–2460.
Elliott,  D. M., Guilak,  F., Vail,  T. P., Wang,  J. Y., and Setton,  L. A., 1999, “Tensile Properties of Articular Cartilage are Altered by Meniscectomy in a Canine Model of Osteoarthritis,” J. Orthop. Res., 17, pp. 503–508.
Narmoneva,  D. A., Wang,  J. Y., and Setton,  L. A., 1999, “Nonuniform Swelling-Induced Residual Strains in Articular Cartilage,” J. Biomech., 32(4), pp. 401–8.
Mow,  V. C., Kuei,  S. C., Lai,  W. M., and Armstrong,  C. G., 1980, “Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiments,” ASME J. Biomech. Eng., 102, pp. 73–84.
Almeida, E. S., 1995, “Finite Element Formulations for Biological Soft Hydrated Tissues Under Finite Deformation,” Ph.D. thesis, Rensselaer Polytechnic Institute, Troy, NY.
Wayne,  J. S., Woo,  S. L.-Y., and Kwan,  M. K., 1991, “Application of the u-p Finite Element Method to the Study of Articular Cartilage,” ASME J. Biomech. Eng., 113, pp. 397–403.
Lai, W. M., Rubin, D., and Krempl, E., 1993, “The Elastic Solid,” Introduction to Continuum Mechanics. Pergamon Press: Oxford. pp. 217–347.
Anderson,  D. R., Woo,  S. L.-Y., Kwan,  M. D., and Gershuni,  D. H., 1991, “Viscoelastic Shear Properties of the Equine Medial Meniscus,” J. Orthop. Res., 9, pp. 550–558.
Zhu,  W., Chern,  K. Y., and Mow,  V. C., 1994, “Anisotropic Viscoelastic Shear Properties of Bovine Meniscus,” Clin. Orthop. Relat. Res., 306, pp. 34–45.
Elliott,  D. M., and Setton,  L. A., 2000, “A Linear Material Model fr Fiber-Induced Anisotropy of the Anulus Fibrosus,” ASME J. Biomech. Eng., 122, pp. 173–9.
Holman, J. P., 1971, Experimental Methods for Engineers. 2nd Edition 1971, New York: McGraw-Hill. pp. 56–57.
Holmes,  M. H., Lai,  W. M., and Mow,  V. C., 1985, “Singular Perturbation Analysis of the Nonlinear, Flow-Dependent Compressive Stress Relaxation Behavior of Articular Cartilage,” ASME J. Biomech. Eng., 107, pp. 206–218.
Lai,  W. M., and Mow,  V. C., 1980, “Drag-Induced Compression of Articular Cartilage During a Permeation Experiment,” Biorheology, 17(1–2), pp. 111–23.
Cohen, B., 1992, “Anisotropic Hydrated Soft Tissues in Finite Deformation and the Biomechanics of the Growth Plate,” Ph.D. thesis, Columbia University, New York, NY.
Iatridis,  J. C., Setton,  L. A., Foster,  R. J., Rawlins,  B. A., Weidenbaum,  M., and Mow,  V. C., 1998, “Degeneration Affects the Anisotropic and Nonlinear Behaviors of Human Anulus Fibrosus in Compression,” J. Biomech., 31, pp. 535–544.
Soltz,  M. A., and Ateshian,  G. A., 2000, “A Conewise Linear Elasticity Mixture Model for the Analysis of Tension-Compression Nonlinearity in Articular Cartilage,” ASME J. Biomech. Eng., 122, pp. 576–586.
Tsay,  R. Y., and Weinbaum,  S., 1991, “Viscous Flow in a Channel With Periodic Cross-Bridging Fibers: Exact Solutions and Brinkman Approximation,” J. Fluid Mech., 226, pp. 125–148.
Zeng,  Y., Cowin,  S. C., and Weinbaum,  S., 1994, “A Fiber Matrix Model for Fluid Flow and Streaming Potentials in the Canaliculi of an Osteon,” Ann. Biomed. Eng., 22, pp. 280–292.
Li, J. T., Armstrong, C. G., and Mow, V. C., 1983, “The Effect of Strain Rate on Mechanical Properties of Articular Cartilage in Tension,” ASME Biomechanics Symposium 1983: Applied Mechanics Division, 56 , pp. 117–120.
Goertzen,  D. J., Budney,  D. R., and Cinats,  J. G., 1997, “Methodology and Apparatus to Determine Material Properties of the Knee Joint Meniscus,” Med. Eng. Phys., 19, pp. 412–419.
Fithian,  D. C., Zhu,  W. B., Ratcliffe,  A., Kelly,  M. A., Mow,  V. C., and Malinin,  T. I., 1989, “Exponential Law Representation of Tensile Properties of Human Meniscus,” Proc. Institute of Mechanical Engineering in Bioengineering, 203, pp. 85–90.
Setton,  L. A., Perry,  C. H., Elliott,  D. M., Wyland,  D. J., LeRoux,  M. A., Guilak,  F., and Vail,  T. P., 1999, “The Anisotropic Properties of the Healing Meniscus in Tension,” Adv. Bioeng., BED-42, pp. 73–74.
Soulhat,  J., Buschmann,  M. D., and Shirazi-Adl,  A., 1999, “A Fibril-Network-Reinforced Biphasic Model of Cartilage in Unconfined Compression,” J. Biomed. Eng., 121, pp. 340–347.
Fortin,  M., Soulhat,  J., Shirazi-Adl,  A., Hunziker,  E., and Buschmann,  M., 2000, “Unconfined Compression of Articular Cartilage: Nonlinear Behavior and Comparison with a Fibril-Reinforced Biphasic Model,” ASME J. Biomech. Eng., 122, pp. 189–95.
Schreppers,  G. J. M., Sauren,  A. A. H. J., and Huson,  A., 1991, “A Model of Force Transmission in the Tibio-Femoral Contact Incorporating Fluid and Mixtures,” Proc. Inst. Mech. Eng., IMechE Conf., 205, pp. 233–241.
Spilker,  R. L., Donzelli,  P. S., and Mow,  V. C., 1992, “A Transversely Isotropic Biphasic Finite Element Model of the Meniscus,” J. Biomech., 25, pp. 1027–1045.
Kwan,  M. K., Wayne,  J. S., Woo,  S. L.-Y., Field,  F. P., Hoover,  J., and Meyers,  M., 1989, “Histological and Biomechanical Assessment of Articular Cartilage from Stored Osteochondral Shell Allografts,” J. Orthop. Res., 7, pp. 637–644.
Ateshian,  G. A., 1997, “A Theoretical Formulation for Boundary Friction in Articular Cartilage,” J. Biomech. Eng., 119, pp. 81–86.
Armstrong,  C. G., and Mow,  V. C., 1982, “Variations in the Intrinsic Mechanical Properties of Human Articular Cartilage with Age, Degeneration, and Water Content,” J. Bone J. Surg., 64A, pp. 88–94.
Drost,  M. R., Willems,  P., Snijders,  H., Huyghe,  J. M., Janssen,  J. D., and Huson,  A., 1995, “Confined Compression of Canine Annulus Fibrosus Under Chemical and Mechanical Loading,” J. Biomech. Eng., 117, pp. 390–396.
Best,  B. A., Guilak,  F., Setton,  L. A., Zhu,  W., Saed-Nejad,  F., Ratcliffe,  A., Weidenbaum,  M., and Mow,  V. C., 1994, “Compressive Mechanical Properties of the Human Anulus Fibrosus and Their Relationship to Biochemical Composition,” Spine, 19, pp. 212–221.


Grahic Jump Location
Schematic of meniscal sample orientations for tensile testing to determine the transversely isotropic elastic properties and permeability coefficients. The permeability coefficient governing flow in the direction of the collagen fibers, k1, was determined from radial samples in the r-z plane, while the permeability coefficient in the transverse direction, k2, was determined from both r-θ radial samples and circumferential samples. The correspondence between the r,θ,z coordinates and the material coordinates is r=2,θ=3, and z=1.
Grahic Jump Location
Transversely isotropic material properties of the meniscus determined from tensile testing. (left) Young’s moduli determined for the meniscus from equilibrium stress-strain data. Values shown for E2 are the average result from the two orientations of radial samples, r-z plane and r-θ, as no differences were detected with orientation (p>0.05, ANOVA)  *  indicates significantly different from E1,p<0.05, ANOVA. (right) Poisson’s ratios computed from equilibrium strain data obtained using optical image analysis.  *  indicates significantly different from ν12,p<0.05, ANOVA.
Grahic Jump Location
Representative fits of the biphasic, transversely isotropic FEM to the tensile stress-relaxation behavior of meniscal samples at ε=0.02–0.08 (a)–(d)
Grahic Jump Location
Permeability coefficients for three orientations of meniscal samples at 4 levels of applied tensile strain. The constant, linear permeability coefficients were determined at each level of applied strain from biphasic FEM optimization. The permeability coefficient, k1, was determined from r-z radial samples and k2 was determined from circumferential and r-θ radial samples as noted. The intrinsic permeability, k0, from an exponential model fit (k=k0e) of the permeability at the 4 strain increments is also included.
Grahic Jump Location
Typical prediction for tensile stress-relaxation of a circumferential sample from biphasic, transversely isotropic FEM. The predicted response at ε=0.06 was obtained from the average of the permeability coefficients at ε=0.02, 0.04, and 0.08.



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In