0
TECHNICAL PAPERS

Noninvasive Measurement of Time-Varying Three-Dimensional Relative Pressure Fields Within the Human Heart

[+] Author and Article Information
T. Ebbers, L. Wigström

Department of Medicine and Care, Clinical Physiology and Department of Biomedical Engineering, Linköping University, SE-581 85 Linköping, Sweden

A. F. Bolger

Department of Medicine, University of California, San Francisco, CA

B. Wranne

Department of Medicine and Care, Clinical Physiology, Linköping University, SE-581 85 Linköping, Sweden

M. Karlsson

Department of Biomedical Engineering, Linköping University, SE-581 85 Linköping, Sweden

J Biomech Eng 124(3), 288-293 (May 21, 2002) (6 pages) doi:10.1115/1.1468866 History: Received August 16, 2001; Revised January 24, 2002; Online May 21, 2002
Copyright © 2002 by ASME
Your Session has timed out. Please sign back in to continue.

References

Thomas,  J. D., and Weyman,  A. E., 1992, “Numerical Modeling of Ventricular Filling,” Ann. Biomed. Eng., 20, pp. 19–39.
Taylor,  T. W., and Yamaguchi,  T., 1995, “Flow Patterns in Three-Dimensional Left Ventricular Systolic and Diastolic Flows Determined From Computational Fluid Dynamics,” Biorheology, 32, pp. 61–71.
Peskin,  C. S., and McQueen,  D. M., 1992, “Cardiac Fluid Dynamics,” Crit. Rev. Biomed. Eng., 20, pp. 451–459.
Durand,  E. P., Jolivet,  O., Itti,  E., Tasu,  J. P., and Bittoun,  J., 2001, “Precision of Magnetic Resonance Velocity and Acceleration Measurements: Theoretical Issues and Phantom Experiments,” J. Magn. Reson Imaging, 13, pp. 445–451.
Lingamneni,  A., Hardy,  P., Powell,  K., Pelc,  N., and White,  R., 1995, “Validation of Cine Phase-Contrast MR Imaging for Motion Analysis,” J. Magn. Reson Imaging, 5, pp. 331–338.
Nordell,  B., Ståhlberg,  F., Ericsson,  A., and Ranta,  C., 1988, “A Rotating Phantom for the Study of Flow Effects in MR Imaging,” Magn. Reson. Imaging, 6, pp. 695–705.
Kim,  W. Y., Walker,  P. G., Pedersen,  E. M., Poulsen,  J. K., Oyre,  S., Houlind,  K., and Yoganathan,  A. P., 1995, “Left Ventricular Blood Flow Patterns in Normal Subjects: A Quantitative Analysis by Three-Dimensional Magnetic Resonance Velocity Mapping,” J. Am. Coll. Cardiol., 26, pp. 224–238.
Fyrenius,  A., Wigström,  L., Bolger,  A. F., Ebbers,  T., Öhman,  K. P., Karlsson,  M., Wranne,  B., and Engvall,  J., 1999, “Pitfalls in Doppler Evaluation of Diastolic Function: Insights From Three-Dimensional Magnetic Resonance Imaging,” J. Am. Soc. Echocardiogr, 12, pp. 817–826.
Fyrenius,  A., Wigström,  L., Ebbers,  T., Karlsson,  M., Engvall,  J., and Bolger,  A. F., 2001, “Three Dimensional Flow in the Human Left Atrium,” Heart, 86, pp. 448–455.
Ebbers,  T., Wigström,  L., Bolger,  A. F., Engvall,  J., and Karlsson,  M., 2001, “Estimation of Relative Cardiovascular Pressures Using Time-Resolved Three-Dimensional Phase Contrast MRI,” Magn. Reson. Med., 45, pp. 872–879.
Song,  S. M., Leahy,  R. M., Boyd,  D. P., Brundage,  B. H., and Napel,  S., 1994, “Determining Cardiac Velocity Fields and Intraventricular Pressure Distribution From a Sequence of Ultrafast CT Cardiac Images,” IEEE Trans. Med. Imaging, 13, pp. 386–397.
Yang,  G. Z., Kilner,  P. J., Wood,  N. B., Underwood,  S. R., and Firmin,  D. N., 1996, “Computation of Flow Pressure Fields From Magnetic Resonance Velocity Mapping,” Magn. Reson. Med., 36, pp. 520–526.
Tyszka,  J. M., Laidlaw,  D. H., Asa,  J. W., and Silverman,  J. M., 2000, “Three-Dimensional, Time-Resolved (4D) Relative Pressure Mapping Using Magnetic Resonance Imaging,” J. Magn. Reson Imaging, 12, pp. 321–329.
Wigström,  L., Ebbers,  T., Fyrenius,  A., Karlsson,  M., Engvall,  J., Wranne,  B., and Bolger,  A. F., 1999, “Particle Trace Visualization of Intracardiac Flow Using Time Resolved 3D Phase Contrast MRI,” Magn. Reson. Med., 41, pp. 793–799.
Wigström,  L., Sjöqvist,  L., and Wranne,  B., 1996, “Temporally Resolved 3D Phase-Contrast Imaging,” Magn. Reson. Med., 36, pp. 800–803.
Knutsson, H., and Westin, C. F., 1993, “Normalized and Differential Convolution: Methods for Interpolation and Filtering of Incomplete and Uncertain Data,” presented at IEEE Computer Society Conference on Computer Vision and Pattern Recognition, New York.
Irarrazabal,  P., and Nishimura,  D. G., 1995, “Fast Three Dimensional Magnetic Resonance Imaging,” Magn. Reson. Med., 33, pp. 656–662.
Madore,  B., Fredrickson,  J. O., Alley,  M. T., and Pelc,  N. J., 2000, “A Reduced Field-of-View Method to Increase Temporal Resolution or Reduce Scan Time in Cine MRI,” Magn. Reson. Med., 43, pp. 549–558.
Bernstein,  M., Zhou,  X., Polzin,  J., King,  K., Ganin,  A., Pelc,  N., and Glover,  G., 1998, “Concomitant Gradient Terms in Phase Contrast MR: Analysis and Correction,” Magn. Reson. Med., 39, pp. 300–308.
Pelc,  N. J., Sommer,  F. G., Li,  K. C., Brosnan,  T. J., Herfkens,  R. J., and Enzmann,  D. R., 1994, “Quantitative Magnetic Resonance Flow Imaging,” Magn. Reson. Q., 10, pp. 125–147.
Panton, R. L., 1984, Incompressible flow, John Wiley and Sons, New York.
Anderson, D. A., Tannehill, J. C., and Pletcher, R. H., 1984, Computational Fluid Mechanics and Heat Transfer, Hemisphere, Washington DC.
Gresho,  P. M., and Sani,  R. L., 1987, “On Pressure Boundary Conditions for the Incompressible Navier-Stokes Equations,” Int. J. Numer. Methods Fluids, 7, pp. 1111–1145.
Anderson, J. D., 1995, Computational Fluid Dynamics, McGraw-Hill, New York.
Golub, G. H., and Van Loan, C. F., 1996, Matrix Computations, The John Hopkins University Press, Baltimore, MD.
Sarnoff,  S. J., Gilmore,  J. P., and Mitchel,  J. H., 1962, “Influence of Atrial Contraction and Relaxation on Closure of Mitral Valve. Observations on Effect of Autonomic Nerve Activity,” Circ. Res., 11, pp. 26–35.
Noble,  M. I., 1968, “The Contribution of Blood Momentum to Left Ventricular Ejection in the Dog,” Circ. Res., 23, pp. 663–670.
Falsetti,  H. L., Verani,  M. S., Chen,  C. J., and Cramer,  J. A., 1980, “Regional Pressure Differences in the Left Ventricle,” Cathet. Cardiovasc. Diagn., 6, pp. 123–134.
Courtois,  M., Kovács,  S. J., and Ludbrook,  P. A., 1988, “Transmitral Pressure-Flow Velocity Relation; Importance of Regional Pressure Gradients in the Left Ventricle During Diastole,” Circulation, 78, pp. 661–671.
Courtois,  M., Kovács,  S. J., and Ludbrook,  P. A., 1990, “Physiological Early Diastolic Intraventricular Pressure Gradient is Lost During Acute Myocardial Ischemia,” Circulation, 81, pp. 1688–1696.
Nikolic,  S. D., Feneley,  M. P., Pajaro,  O. E., Rankin,  J. S., and Yellin,  E. L., 1995, “Origin of Regional Pressure Gradients in the Left Ventricle During Early Diastole,” Am. J. Physiol., 268, pp. H550–H557.
Smiseth,  O. A., Steine,  K., Sandbæk,  G., Stugaard,  M., and Gjølberg,  T., 1998, “Mechanics of Intraventricular Filling: Study of LV Early Diastolic Pressure Gradients and Flow Velocities,” Am. J. Physiol., 275, pp. H1062–H1069.
Bellhouse,  B. J., and Bellhouse,  F. H., 1969, “Fluid Mechanics of the Mitral Valve,” Nature (London), 224, pp. 615–616.
Reul,  H., Talukder,  N., and Müller,  E. W., 1981, “Fluid Mechanics of the Natural Mitral Valve,” J. Biomech., 14, pp. 361–372.
Yellin,  E. L., Peskin,  C., Yoran,  C., Koenigsberg,  M., Matsumoto,  M., Laniado,  S., McQueen,  D., Shore,  D., and Frater,  R. W., 1981, “Mechanisms of Mitral Valve Motion During Diastole,” Am. J. Physiol., 241, pp. H389–H400.
Ebbers, T., 2001, “Cardiovascular Fluid Dynamics—Methods for Flow and Pressure Field Analysis From Magnetic Resonance Imaging,” Linköping Studies in Science and Technology Dissertations, No. 690, Linköping University, Linköping, Sweden.
Averbuch,  A., Israeli,  M., and Vozovoi,  L., 1998, “A Fast Poisson Solver of Arbitrary Order Accuracy in Rectangular Regions,” SIAM J. Sci. Comput. (USA), 19, pp. 933–952.
Kuo,  C.-C. J., and Levy,  B. C., 1990, “Discretization and Solution of Elliptic PDEs—A Digital Signal Processing Approach,” Proc. IEEE, 78, pp. 1808–1842.

Figures

Grahic Jump Location
Schematic drawing showing the orientation of the segmented three-dimensional volume containing the left atrium and ventricle during diastole
Grahic Jump Location
The computational domain Ω containing the segmented three-dimensional fluid volume ΩF with boundary ∂Ω
Grahic Jump Location
A long axis slice of the relative pressure field (color) and the velocity field (black streamlines) in the left side of the normal human heart at the onset, peak, and end of the early phase of diastolic inflow (a)–(c), the late phase of diastolic inflow (d)–(f ), and ventricular systole (g)–(i). 
Grahic Jump Location
The relative pressure field (gray scale) and the velocity field (black streamlines) around the mitral valve at the peak of the late phase of diastolic inflow. A single short axis slice of the three-dimensional data set is shown.
Grahic Jump Location
The velocity at the base and the pressure difference between the left atrium and apex (solid), the base and the apex (dashed), and the left ventricular outflow tract (LVOT) and the apex (dotted) over the cardiac cycle of the healthy volunteer. In the left panel, the localization of the manually placed points is shown in relation to a contour of the blood pool at mid-diastole (solid) and late systole (dotted).

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In