A Finite Element Model of the Human Knee Joint for the Study of Tibio-Femoral Contact

[+] Author and Article Information
Tammy L. Haut Donahue

Department of Mechanical Engineering, Michigan Technological University, Houghton, MI 49931

M. L. Hull

Department of Mechanical Engineering, and Biomedical Engineering Graduate Group, University of California at Davis, Davis, CA 95616

Mark M. Rashid

Department of Civil Engineering, University of California at Davis, Davis, CA 95616

Christopher R. Jacobs

Musculoskeletal Research Laboratory, Penn State University, Hershey, PA 17033

J Biomech Eng 124(3), 273-280 (May 21, 2002) (8 pages) doi:10.1115/1.1470171 History: Received June 26, 2000; Revised January 30, 2002; Online May 21, 2002
Copyright © 2002 by ASME
Your Session has timed out. Please sign back in to continue.


Newman,  A. P., Daniels,  A. U., and Burks,  R. T., 1993, “Principles and Decision Making in Meniscal Surgery,” Arthroscopy, 9, pp. 33–51.
Siegel,  M. G., and Roberts,  C. S., 1993, “Meniscal Allografts,” Clin. Sports Med., 12, pp. 59–80.
Rangger,  C., Klestil,  T., Gloetzer,  W., Kemmler,  G., and Benedetto,  L. P., 1995, “Osteoarthritis After Arthroscopic Partial Meniscectomy,” Am. J. Sports Med., 23, pp. 240–244.
Fauno,  P., and Nielson,  A. B., 1992, “Arthroscopic Partial Meniscectomy: A Long Term Follow-Up,” Arthroscopy, 8, pp. 345–349.
Bolano,  L. E., and Grana,  W. A., 1993, “Isolated Arthroscopic Partial Meniscectomy: Functional Radiographic Evaluation at Five Years,” Am. J. Sports Med., 21, pp. 432–437.
Aspden,  R. M., 1985, “A Model for the Function and Failure of the Meniscus,” Eng. Med., 14, pp. 119–122.
Hefzy, M. S., Grood, E. S., and Zoghi, M., 1987, “An Axisymmetric Finite Element Model of the Meniscus,” in 1987 Advances in Bioengineering, American Society of Mechanical Engineers, New York, pp. 51–52.
Schreppers,  G. J. M. A., Sauren,  A. A. H. J., and Huson,  A., 1990, “A Numerical Model of the Load Transmission in the Tibio-Femoral Contact Area,” Journal of Engineering in Medicine, 204, pp. 53–59.
Zhang, H., Totterman, S., Perucchio, R., and Lerner, A. L., 1999, “Magnetic Resonance Image Based 3D Poroelastic Finite Element Model of Tibio-Menisco-Femoral Contact,” in 23rd Proceedings of the American Society of Biomechanics, Pittsburgh, PA, pp. 198–199.
Perie,  D., and Hobatho,  M. C., 1998, “In Vivo Determination of Contact Areas and Pressure of the Femorotibial Joint Using Non-Linear Finite Element Analysis,” Clin. Biomech., 13, pp. 394–402.
Bendjaballah,  M. Z., Shirazi-Adl,  A., and Zukor,  D. J., 1995, “Biomechanics of the Human Knee Joint in Compression: Reconstruction, Mesh Generation and Finite Element Analysis,” The Knee, 2, pp. 69–79.
Froimson,  M. I., Ateshian,  G. A., Soslowsky,  L. J., Kelly,  M. A., and Mow,  V. C., 1989, “Quantification of the Surfaces at the Patellofemoral Articulation,” Proc. Inst. Mech. Eng. [H], 5, pp. 73–78.
Li, G., and Loopez, O., 1999, “Reliability of a 3D Finite Element Model Constructed Using Magnetic Resonance Images of a Knee for Joint Contact Stress Analysis,” in 23rd Proceedings of the American Society of Biomechanics, Pittsburgh, PA, pp. 196–197.
Andriacchi,  T. P., Mikosz,  R. P., Hampton,  S. J., and Galante,  J. O., 1983, “Model Studies of the Stiffness Characteristics of the Human Knee Joint,” J. Biomech., 16, pp. 23–29.
Bach,  J. M., and Hull,  M. L., 1995, “A New Load Application System for In Vitro Study of Ligamentous Injuries to the Human Knee Joint,” J. Biomech. Eng., 117, pp. 373–382.
Berns,  G. S., Hull,  M. L., and Patterson,  H. A., 1990, “Implementation of a Five Degree of Freedom Automated System to Determine Knee Flexibility in Vitro,” J. Biomech. Eng., 112, pp. 392–400.
Haut,  T. L., Hull,  M. L., and Howell,  S. M., 1997, “A High Accuracy Three-Dimensional Coordinate Digitizing System for Reconstructing the Geometry of Diarthrodial Joints,” J. Biomech., 31, pp. 571–577.
Ateshian,  G. A., Soslowsky,  L. J., and Mow,  V. C., 1991, “Quantitation of Articular Surface Topography and Cartilage Thickness in Knee Joints Using Stereophotogrammetry,” J. Biomech., 24, pp. 761–776.
Ashman,  R. B., Cowin,  S. C., Van Bruskirk,  W. C., and Rice,  J. C., 1984, “A Continuous Wave Technique for the Measurement of the Elastic Properties of Bone,” J. Biomech., 17, pp. 349–361.
Lakes,  R. S., and Katz,  J. L., 1979, “Viscoelastic Properties of Wet Cortical Bone. III. A Non-linear Constitutive Equation,” J. Biomech., 12, pp. 689–698.
Cowin, S. C., 1989, “The Mechanical Properties of Cortical Bone Tissue,” in Bone Mechanics, S. C. Cowins, ed., CRC Press, Boca Raton, FL, pp. 98–127.
Cowin S. C., 1989, “The Mechanical Properties of Cancellous Bone,” in Bone Mechanics, S. C. Cowins, eds., CRC Press, Boca Raton, FL, pp. 129–157.
Knets, I., and Malmeister, A., 1977, “Deformability and Strength of Human Compact Bone Tissue,” Mechanics of Biological Solids, Bulgarian Academy of Sciences, pp. 133.
Kuhn,  J. L., Goldstein,  S. A., Ciarelli,  M. J., and Matthews,  L. S., 1989, “The Limitations of Canine Trabecular Bone as a Model for Human: A Biomechanical Study,” J. Biomech., 22, pp. 95–107.
Armstrong,  C. G., Lai,  W. M., and Mow,  V. C., 1984, “An Analysis of the Unconfined Compression of Articular Cartilage,” J. Biomed. Eng., 106, pp. 165–173.
Eberhardt,  A. W., Keer,  L. M., Lewis,  J. L., and Vithoontien,  V., 1990, “An Analytical Model of Joint Contact,” J. Biomech. Eng., 112, pp. 407–413.
Shepard,  D. E. T., and Seedhom,  B. B., 1999, “The ‘Instantaneous’ Compressive Modulus of Human Articular Cartilage in Joints of the Lower Limb,” Rheumatology, 38, pp. 124–132.
Wismans,  J., Veldpaus,  F., Janssen,  J., Huson,  A., and Struben,  P., 1980, “A Three-Dimensional Mathematical Model of the Knee Joint,” J. Biomech., 13, pp. 677–685.
Pandy,  M. G., Sasaki,  K., and Kim,  S., 1997, “A Three-Dimensional Musculoskeletal Model of the Human Knee Joint. Part I: Theoretical Construction,” Computer Methods in Biomedical Engineering, 1, pp. 87–108.
Li,  G., Gil,  J., Kanamori,  A., and Woo,  S. L., 1999, “A Validated Three-Dimensional Computational Model of a Human Knee Joint,” J. Biomech. Eng., 121, pp. 657–662.
Blankevoort,  L., Kuiper,  J. H., Huiskes,  R., and Grootenboer,  H. J., 1991, “Articular Contact in a Three-Dimensional Model of the Knee,” J. Biomech., 24, pp. 1019–1031.
Butler,  D. L., Kay,  M. D., and Stouffer,  D. C., 1986, “Comparison of Material Properties in Fascicle-Bone Units from Human Patellar Tendon and Knee Ligaments,” J. Biomech., 19, pp. 425–432.
Tissakht,  M., and Ahmed,  A. M., 1995, “Tensile Stress-Strain Characteristics of the Human Meniscal Material,” J. Biomech., 28, pp. 411–422.
Skaggs,  D. L., Warden,  W. H., and Mow,  V. C., 1994, “Radial Tie Fibers Influence the Tensile Properties of the Bovine Medial Meniscus,” J. Orthop. Res., 12, pp. 176–185.
Whipple, R., Wirth, C. R., and Mow, V. C., 1984, “Mechanical Properties of the Meniscus,” in 1984 Advances in Bioengineering, American Society of Mechanical Engineers, New York, pp. 32–33.
Fithian, D. C., Schmidt, M. B., Ratcliffe, A., and Mow, V. C., 1989, “Human Meniscus Tensile Properties: Regional Variation and Biochemical Correlation,” in Transactions of the Orthopedic Research Society, 35, pp. 205.
Noyes,  F. R., and Grood,  E. S., 1976, “The Strength of the Anterior Cruciate Ligament in Humans and Rhesus Monkeys,” J. Bone Jt. Surg., Am. Vol., 58, pp. 1074–1082.
Merz,  B., Niederer,  P., Muller,  R., and Ruegsegger,  P., 1996, “Automated Finite Element Analysis of Excised Human Femora Based on Precision-QCT,” J. Biomech. Eng., 118, pp. 387–390.
Viceconti,  M., Bellingeri,  L., Cristofolini,  L., and Toni,  A., 1998, “A Comparative Study on Different Methods of Automatic Mesh Generation of Human Femurs,” Med. Eng. Phys., 20, pp. 1–10.
Allen,  P. R., Denham,  R. A., and Swan,  A. V., 1984, “Late Degenerative Changes After Meniscectomy. Factors Affecting the Knee after Operation,” J. Bone Jt. Surg. Br. Vol. 66, pp. 666–671.
Howell, D. S., Treadwell, B. B., and Trippel, S. B., 1992, “Etiopathogenesis of Osteoarthritis,” in Osteoarthritis, Diagnosis and Medical/Surgical Management, R. W. Moskowitz, Howell, D. S., Goldberg, V. M., Mankin, H. J., eds., WB Saunders, Philadelphia, PA.
Donzelli,  P. S., Spilker,  R. L., Ateshian,  G. A., and Mow,  V. C., 1999, “Contact Analysis of Biphasic Transversely Isotropic Cartilage Layers and Correlations with Tissue Failure,” J. Biomech., 32, pp. 1037–1047.
Garcia,  J. J., Altiero,  N. J., and Haut,  R. C., 1998, “An Approach for the Stress Analysis of Transversely Isotropic Biphasic Cartilage Under Impact Load,” J. Biomech. Eng., 120, pp. 608–613.
Ahmed,  A. M., and Burke,  D. L., 1983, “In-vitro Measurement of Static Pressure Distribution in Synovial Joints-Part I: Tibial Surface of the Knee,” J. Biomech. Eng., 105, pp. 216–225.
Alhalki,  M. M., Howell,  S. M., and Hull,  M. L., 1999, “How Three Methods for Fixing a Medial Meniscal Autograft Affect Tibial Contact Mechanics,” Am. J. Sports Med., 27, pp. 320–328.
Fukubayashi,  T., and Kurosawa,  H., 1980, “The Contact Area and Pressure Distribution Pattern of the Knee. A Study of Normal and Osteoarthritic Knee Joints,” Acta Orthop. Scand., 51, pp. 871–879.
Huang, A. Z., 2000, “Cross-sectional Parameters of Lateral Meniscal Allografts that Determine the Differences in Tibial Contact Mechanics from the Intact Meniscus in Cadaveric Knees,” MS Thesis in Biomedical Engineering, University of California at Davis, Davis, CA.
Paletta,  G. A., Manning,  T., Snell,  E., Parker,  R., and Bergfeld,  J., 1997, “The Effect of Allograft Meniscal Replacement on Intraarticular Contact Area and Pressures in the Human Knee,” Am. J. Sports Med., 25, pp. 692–698.
Sekaran,  V., Hull,  M. L., and Howell,  S. M., 2002, “Non-anatomic Location of the Posterior Horn of the Medial Meniscal Autograft Implanted in a Cadaveric Knee Adversely Affects the Pressure Distribution on the Tibial Plateau,” Am. J. Sports Med., 30, pp. 74–82.
Chen,  M. I., Branch,  T. P., and Hutton,  W. C., 1996, “Is It Important to Secure the Horns During Lateral Meniscal Transplantation? A Cadaveric Study,” Arthroscopy, 12, pp. 174–181.
Kadaba,  M. P., Ramakrishnan,  H. K., and Wootten,  M. E., 1990, “Measurement of Lower Extremity Kinematics During Level Walking,” J. Orthop. Res., 8, pp. 383–392.
Lafortune,  M. A., Cavanagh,  P. R., Sommer,  H. J., and Kalenak,  A., 1992, “Three-Dimensional Kinematics of the Human Knee During Walking,” J. Biomech., 25, pp. 347–357.
Chao,  E. Y., Laughman,  R. K., Schneider,  E., and Stauffer,  R. N., 1983, “Normative Data of Knee Joint Motion and Ground Reaction Forces in Adult Level Walking,” J. Biomech., 16, pp. 219–233.


Grahic Jump Location
Representative helical CT image used to obtain bone geometry with the points used for digitization. Solid lines represent the edges of the rods used for tissue geometry registration. Note that only one rod can be seen in this scan.
Grahic Jump Location
Anterior view of the finite element representation of the entire tibio-femoral joint (ligaments and meniscal attachments removed for clarity)
Grahic Jump Location
Contact pressure pattern from the tibial plateau under 800 N compressive force at 0 degrees flexion, deformable bones, the intermediate mesh size, and F/E constrained
Grahic Jump Location
Anterior view of the finite element representation of the joint with the assumption of rigid bones




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In