0
TECHNICAL PAPERS

Multiphase Mechanics of Capsule Formation in Tumors

[+] Author and Article Information
S. R. Lubkin

Biomathematics Program, North Carolina State University, Raleigh, NC 27695-8203e-mail: lubkin@eos.ncsu.edu

T. Jackson

Institute for Mathematics and Its Applications, University of Minnesota, Minneapolis, MN 55455

J Biomech Eng 124(2), 237-243 (Mar 29, 2002) (7 pages) doi:10.1115/1.1427925 History: Received October 06, 1999; Revised August 09, 2001; Online March 29, 2002
Copyright © 2002 by ASME
Your Session has timed out. Please sign back in to continue.

References

Vaage,  J., 1992, “Fibrosis in Immune Control of Mammary-Tumor Growth” Int. J. Cancer, 51, pp. 325–328.
Robbins, S. L., Cotran, R. S., and Kumar, V., 1984, “Neoplasia,” Pathologic Basis of Disease, 3 Edition, W. B. Saunders, pp. 214–253.
Ng,  I. O. L., Lai,  E. C. S., Lai,  M. M. T., and Fan,  S. T., 1992, “Tumor Encapsulation in Hepatocellular Carcinoma: a Pathological Study of 198 Cases,” Cancer (N.Y.), 70(1), pp. 45–49.
Barr,  L. C., 1989, “The Encapsulation of Tumours,” Clin. Expl. Metastasis, 7(3), pp. 277–282.
Barr, L. C., Carter, R. L., and Davies, A. J. S., 1988, “Encapsulation of Tumours as a Modified Wound Healing Response,” Lancet, ii, pp. 135–137.
Helmlinger,  G., Netti,  P. A., Lichtenbeld,  H. C., Melder,  R. J., and Jain,  R. K., 1997, “Solid Stress Inhibits the Growth of Multicellular Tumor Spheroids,” Nature Biotech, 15, pp. 778–783.
Skalak,  R., Zargaryan,  S., Jain,  R. K., Netti,  P. A., and Hoger,  A., 1996, “Compatibility and the Genesis of Residual Stress by Volumetric Growth,” J. Math. Biol., 34, pp. 889–914.
Ritchie, A. C., 1970, “The Classification Morphology and Behavior of Tumours,” General Pathology, 4th Edition, H. E. W. Florey, ed., Lloyd-Luke, p. 668.
Berenblum, L., 1970, “The Nature of Tumour Growth,” General Pathology, 4th Edition, H. E. W. Florey, ed., Lloyd-Luke, pp. 645–667.
Jain,  R. K., 1988, “Determinants of Tumor Blood Flow: a Review,” Cancer Res., 48, pp. 2641–2658.
Netti,  P. A., Baxter,  L. T., Boucher,  Y., Skalak,  R., and Jain,  R. K., 1997, “Macro- and Microscopic Fluid Transport in Living Tissues: Application to Solid Tumors,” AIChE J., 43(3), pp. 818–834.
Mow,  V. C., Kuei,  S. C., Lai,  W. M., and Armstrong,  C. G., 1980, “Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiments,” ASME J. Biomech. Eng., 102, pp. 73–84.
Simon,  B. R., Liable,  J. P., Pflaster,  D., Yuan,  Y., and Krag,  M. H., 1996, “A Poroelastic Finite Element Formulation Including Transport and Swelling in Soft Tissue Structures,” ASME J. Biomech. Eng., 118, pp. 1–9.
Joseph, D. D., 1990, Fluid Dynamics of Viscoelastic Liquids, Springer-Verlag, New York, NY.
Drew,  D. A., 1971, “Averaged Field Equations for Two-Phase Media,” Stud. Appl. Math., L(2), pp. 133–166.
Drew,  D. A., 1983, “Mathematical Modeling of Two-Phase Flow,” Annu. Rev. Fluid Mech., 15, pp. 261–291.
Fung, Y. C., 1990, Biomechanics: Motion, Flow, Stress, and Growth, Springer-Verlag, New York, NY.
Dembo,  M., and Harlow,  F., 1986, “Cell Motion, Contractile Networks, and the Physics of Interpenetrating Reactive Flow,” Biophys. J., 50(1), pp. 109–121.
Doi, M., and Edwards, S. F., 1986, The Theory of Polymer Dynamics, Oxford University Press, Oxford, UK.
Swabb,  E. A., Wei,  J., and Gullino,  P. M., 1974, “Diffusion and Convection in Normal and Neoplastic Tissues,” Cancer Res., 34, pp. 2814–2822.
Boucher,  Y., Brekken,  C., Netti,  P. A., Baxter,  L. T., and Jain,  R. K., 1998, “Intratumoral Infusion of Fluid: Estimation of Hydraulic Conductivity and Implications for the Delivery of Therapeutic Agents,” Br. J. Cancer, 78(11), pp. 1442–1448.
Barocas,  V. H., Moon,  A. G., and Tranquillo,  R. T., 1995, “The Fibroblast-Populated Collagen Microsphere Assay of Cell Traction Force—Part 2: Measurement of the Cell Traction Parameter,” ASME J. Biomech. Eng., 117, pp. 161–170.
Forgacs,  G., Foty,  R. A., Shafrir,  Y., and Steinberg,  M. S., 1998, “Viscoelastic Properties of Living Embryonic Tissues: a Quantitative Study,” Biophys. J., 74(5), pp. 2227–2234.
Jain,  R. K., 1996, “1995 Whitaker Lecture: Delivery of Molecules, Particles, and Cells to Solid Tumors,” Ann. Biomed. Eng., 24, pp. 457–473.
Higton,  D. I. R., and James,  D. W., 1964, “The Force of Contraction of Full-Thickness Wounds of Rabbit Skin,” Brit. J. Surg., 51, pp. 462–466.
Kolodney,  M. S., and Wysolmerski,  R. B., 1992, “Isometric Contraction by Fibroblasts and Endothelial Cells in Tissue Culture: a Quantitative Study,” J. Cell Biol., 117(1), pp. 73–82.
Kim, S., and Karrila, S. J., 1991, Microhydrodynamics: Principles and Selected Applications, Butterworth-Heinemann, Boston, MA.
Fung, Y. C., 1993, Biomechanics: Mechanical Properties of Living Tissues, 2nd Edition, Springer-Verlag, New York, NY.
Gullino,  P. M., Clark,  S. H., and Grantham,  F. H., 1964, “The Interstitial Fluid of Solid Tumors,” Cancer Res., 24, pp. 780–797.
Baxter,  L. T., and Jain,  R. K., 1989, “Transport of Fluid and Macromolecules in Tumors I. Role of Interstitial Pressure and Convection,” Microvasc. Res., 37, pp. 77–104.
Boucher,  Y., Baxter,  L. T., and Jain,  R. K., 1990, “Interstitial Pressure Gradients in Tissue-Isolated and Subcutaneous Tumors: Implications for Therapy,” Cancer Res., 50, pp. 4478–4484.
Boucher,  Y., Kirkwood,  J. M., Opacic,  D., Desantis,  M., and Jain,  R. K., 1991, “Interstitial Hypertension in Superficial Metastatic Melanomas in Humans,” Cancer Res., 51, pp. 6691–6694.
Gutmann,  R., Leunig,  M., Feyh,  J., Goetz,  A. E., Messmer,  K., Kastenbauer,  E., and Jain,  R. K., 1992, “Interstitial Hypertension in Head and Neck Tumors in Patients: Correlation with Tumor Size,” Cancer Res., 52, pp. 1993–1995.
Wang,  H.-B., Dembo,  M., and Wang,  Y. -L., 2000, “Substrate Flexibility Regulates Growth and Apoptosis of Normal but not Transformed Cells,” Am. J. Physiol. Cell Physiol., 279, pp. C1345–C1350.

Figures

Grahic Jump Location
Formation of tumor by expansive growth only. Simulation of spherically symmetric nondimensional Eqs. (2627282930), with dimensional parameters θ0=0.2,φ=1013 kg/m3-s,μ=λ=105 kg/m-s,P0=104 Pa,a=0,l/k=4wk,L=5×10−3 m. (See Table 1 for expected range of values.) β=0.05,γ=2×10−5. Contours run from 0–12 wk except (c,d) 0–0.5 wk. (a,c,e,f ) Density of tumor (θc, left) and normal (θ(1−c), right) tissue during tumor growth. (b,d,f,h) Nondimensional interstitial pressure Pw/P0. Lengths are nondimensional, r/L.(a,b)a=h=0. No thirst or contractility. (c,d)a=102 Pa,h=0. Weak contractility but no thirst. (e,f )a=0,h=104 Pa. Thirst but no contractility. (g,h)a=103 Pa,h=104 Pa. Thirst and contractility.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In