Direct Measurement of the Poisson’s Ratio of Human Patella Cartilage in Tension

[+] Author and Article Information
Dawn M. Elliott

McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA 19104-6081e-mail: delliott@mail.med.upenn.edu

Daria A. Narmoneva

Department of Mechanical Engineering, Massachusetts Institute of Technology, Boston, MA

Lori A. Setton

Department of Biomedical Engineering, Duke University, Durham, NC

J Biomech Eng 124(2), 223-228 (Mar 29, 2002) (6 pages) doi:10.1115/1.1449905 History: Received November 29, 2000; Revised December 05, 2001; Online March 29, 2002
Copyright © 2002 by ASME
Your Session has timed out. Please sign back in to continue.


Mow, V. C., and Setton, L. A., 1998, “Mechanical Properties of Normal and Osteoarthritic Articular Cartilage,” Osteoarthritis, eds., K. D. Brandt, M. Doherty, and L. S. Lohmander, Oxford University Press, Oxford, UK, pp. 108–122.
Akizuki,  S., Mow,  V. C., Muller,  F., Pita,  J. C., , 1986, “Tensile Properties of Human Knee Joint Cartilage: I. Influence of Ionic Conditions, Weight Bearing, and Fibrillation on the Tensile Modulus,” J. Orthop. Res., 4, pp. 379–392.
Kempson,  G. E., 1982, “Relationship Between the Tensile Properties of Articular Cartilage From the Human Knee and Age,” Ann. Rheum. Dis., 41, pp. 508–511.
Kempson,  G. E., 1991, “Age-Related changes in the Tensile Properties of Human Articular Cartilage: A Comparative Study Between the Femoral Head of the Hip Joint and the Talus of the Ankle Joint,” Biochim. Biophys. Acta, 1075, pp. 223–230.
Kempson,  G. E., Muir,  H., Pollard,  C., and Tuke,  M., 1973, “Tensile Properties of the Cartilage of Human Femoral Condyles Related to the Content of collagen and Glycosaminoglycans,” Biochim. Biophys. Acta, 297, pp. 465–472.
Kempson, G. E., 1979, “Mechanical Properties of Articular Cartilage,” Adult Articular Cartilage, ed., M. A. R. Freeman, Grune and Stratton, NY, pp. 171–227.
Kempson,  G. E., 1975, “Mechanical Properties of Articular Cartilage and Their Relationship to Matrix Degradation,” Ann. Rheum. Dis., 34, pp. 111–113.
Roth,  V., and Mow,  V. C., 1980, “Intrinsic Tensile Behavior of the Matrix of Bovine Articular Cartilage and Its Variation With Age,” J. Bone Jt. Surg., 62A(7), pp. 1102–1117.
Woo,  S. L. Y., Akeson,  W. H., and Jemmott,  G. F., 1976, “Measurements of Nonhomogeneous Directional Mechanical Properties of Articular Cartilage in Tension,” J. Biomech., 9, pp. 785–791.
Woo,  S. L., Lubock,  P., Gomez,  M. A., Jemmott,  G. F., , 1979, “Large Deformation Nonhomogeneous and Directional Properties of Articular Cartilage in Uniaxial Tension,” J. Biomech., 12(6), pp. 437–446.
Chang,  D. G., Lottman,  L. M., Chen,  A. C., Schinagl,  R. M., , 1999, “The Depth-Dependent, Multi-Axial Properties of Aged Human Patellar Cartilage in Tension,” Trans. Orthop. Res. Soc., 23, p. 644.
Elliott,  D. M., Kydd,  S. R., Perry,  C. H., and Setton,  L. A., 1999, “Direct Measurement of the Poisson’s Ratio of Human Articular Cartilage in Tension,” Trans. Orthop. Res. Soc., 23, p. 649.
Huang,  C.-Y., Stankiewicz,  A., Ateshian,  G. A., Flatow,  E. L. , 1999, “Anisotropy, Inhomogeneity, and Tension-Compression Nonlinearity of Human Glenohumeral Cartilage in Finite Deformation,” Trans. Orthop. Res. Soc., 23, p. 95.
Jurvelin,  J. S., Buschmann,  M. D., and Hunziker,  E. B., 1997, “Optical and Mechanical Determination of Poisson’s Ratio of Adult Bovine Humeral Articular Cartilage,” J. Biomech., 30(3), pp. 235–241.
Wong,  M., Ponticiello,  M., Kovanen,  V., and Jurvelin,  J., 2000, “Volumetric Changes of Articular Cartilage During Stress Relaxation in Unconfined Compression,” J. Biomech., 33(9), pp. 1049–1054.
Mankin,  H. J., Dorfman,  H., Lippiello,  L., and Zarins,  A., 1971, “Biochemical and Metabolic Abnormalities in Articular Cartilage From Osteo-Arthritic Human Hips,” J. Bone Jt. Surg., 53A(3), pp. 523–537.
Carlson,  C. S., Loeser,  R. F., Purser,  C. B., Gardin,  J. F., , 1996, “Osteoarthritis in Cynomolgus Macaques III: Effects of Age, Gende, and Subchondral Bone Thickness on the Severity of Disease,” J. Bone Mineral Res., 11(9), pp. 1209–1217.
Meachim,  G., Denham,  D., Emery,  I. H., and Wilkinson,  P. H., 1974, “Collagen Alignments and Artificial Splits at the Surface of Human Articular Cartilage,” J. Anatomy, 118, pp. 101–118.
Elliott,  D. M., Guilak,  F., Vail,  T. P., Wang,  J. Y., , 1999, “Tensile Properties of Articular Cartilage are Altered by Meniscectomy in a Canine Model of Osteoarthritis,” J. Orthop. Res., 17(4), pp. 503–508.
Elliott,  D. M., and Setton,  L. A., 2001, “Anisotropic and Inhomogeneous Tensile Behavior of the Human Anulus Fibrosus: Experimental Measurement and Material Model Predictions,” ASME J. Biomech. Eng., 123, pp. 256–263.
Mow,  V. C., Kuei,  S. C., Lai,  W. M., and Armstrong,  C. G., 1980, “Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiments,” ASME J. Biomech. Eng., 102, pp. 73–84.
Hayes,  W. C., and Mockros,  L. F., 1971, “Viscoelastic Properties of Human Articular Cartilage,” J. Appl. Physiol., 31, pp. 562–568.
Mow,  V. C., Gibbs,  M. C., Lai,  W. M., Zhu,  W. B., , 1989, “Biphasic Indentation of Articular Cartilage—II. A Numerical Algorithm and an Experimental Study,” J. Biomech., 22(8/9), pp. 853–861.
Athanasiou,  K. A., Rosenwasser,  M. P., Buckwalter,  J. A., Malinin,  T. I., , 1991, “Interspecies Comparisons of In Situ Intrinsic Mechanical Properties of Distal Femoral Cartilage,” J. Orthop. Res., 9(3), pp. 330–340.
Cohen,  B., Lai,  W. M., and Mow,  V. C., 1998, “A Transversely Isotropic Biphasic Model for Unconfined Compression of Growth Plate and Chondroepiphysis,” ASME J. Biomech. Eng., 120, pp. 491–496.
Soulhat,  J., Buschmann,  M. B., and Shirazi-Adl,  A., 1999, “A Fibril-Network-Reinforced Biphasic Model of Cartilage in Unconfined compression,” ASME J. Biomech. Eng., 121, pp. 340–347.
Soltz,  M. A., and Ateshian,  G. A., 2000, “A Conewise Linear Elasticity Mixture Model for the Analysis of Tension-Compression Nonlinearity in Articular Cartilage,” ASME J. Biomech. Eng., 122, pp. 576–586.
Korhonen,  R. K., Toyras,  J., Nieminen,  M. T., Rieppo,  J., , 2001, “Effect of Ionic Environment on the Compression-Tension Nonlinearity of Articular Cartilage in the Direction Perpendicular to Articular Surface,” Trans. Orthop. Soc., 26, p. 439.
Spirit,  A. A., Mak,  A. F., and Wassell,  R. P., 1989, “Nonlinear Viscoelastic Properties of Articular Cartilage in Shear,” J. Orthop. Res., 7(1), pp. 43–49.
Setton,  L. A., Mow,  V. C., and Howell,  D. S., 1995, “Mechanical Behavior of Articular Cartilage in Shear is Altered by Transection of the Anterior Cruciate Ligament,” J. Orthop. Res., 13, pp. 473–482.
Zhu,  W., Mow,  V. C., Koob,  T. J., and Eyre,  D. R., 1993, “Viscoelastic Shear Properties of Articular Cartilage and the Effects of Glycosidase Treatments,” J. Orthop. Res., 11, pp. 771–781.
LeRoux,  M. A., Arokoski,  J., Vail,  T. P., Guilak,  F., , 2000, “Simultaneous Changes in the Mechanical Properties, Quantitative Collagen Organization, and Proteoglycan Concentration of Articular Cartilage Following Canine Meniscectomy,” J. Orthop. Res., 18, pp. 383–392.
Donzelli,  P. S., Spiker,  R. L., Ateshian,  G. A., and Mow,  V. C., 1999, “Contact Analysis of Biphasic Transversely Isotropic Cartilage Layers and Correlations With Tissue Failure,” J. Biomech., 32(10), pp. 1037–1047.
Bursac,  P. M., Obitz,  T. W., Eisenberg,  S. R., and Stamenovic,  D., 1999, “Confined and Unconfined Stress Relaxation of Cartilage: Appropriateness of a Transversely Isotropic Analysis,” J. Biomech., 32, pp. 1125–1130.


Grahic Jump Location
Schematic of human patella showing the site of mechanical test sample and histologic section
Grahic Jump Location
Principal components of infinitesimal strain in the longitudinal (εyy) and transverse (εxx) directions for a representative sample from the cartilage surface zone. Data points represent mean values for all triads at each applied grip strain (ε), and lines represent linear regressions.
Grahic Jump Location
Representative human patellar cartilage histological section stained with toluidine blue from a 66-yr old (A), and a 76-yr old (B)
Grahic Jump Location
Average tensile stress-strain response for patella articular cartilage in the surface zone and middle zone. Surface zone samples (shown as solid line) grouped according to age, a—under 70-yr old (n=5),b—over 70-yr old (n=3). Middle zone samples (shown as dash line) combined for all ages (n=10). Error bars represent one standard deviation in stress.
Grahic Jump Location
Correlation between linear modulus (E) and age in the surface and middle zone



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In