Effect of Vessel Compliance on the In-Vitro Performance of a Pulsating Respiratory Support Catheter

[+] Author and Article Information
Monica Y. Garcia

Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA

Brack G. Hattler

McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, PA

William J. Federspiel

McGowan Institute for Regenerative Medicine, Department of Chemical Engineering, Department of Surgery, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA

J Biomech Eng 124(1), 56-62 (Sep 17, 2001) (7 pages) doi:10.1115/1.1428556 History: Received January 11, 2001; Revised September 17, 2001
Copyright © 2002 by ASME
Your Session has timed out. Please sign back in to continue.


Tao,  W., Zwischenberger,  J. B., Cox,  C. S., Graves,  D., and Bidani,  A., 1998, “Intracorporeal Gas Exchange Taking Further Steps,” ASAIO J., 44(3), pp. 224–226.
Zwischenberger, J. B., and Bartlett, R. H., 1995, ECMO Extracorporeal Support in Critical Care, Extracorporeal Life Support Organization.
Hattler,  B. G., and Federspiel,  W. J., 1999, “Progress with the Development of the Intravenous Membrane Oxygenator (MO),” Perfusion, 14, pp. 311–315.
Rossi,  N., Kolobow,  T., Aprigliano,  M., Tsuno,  K., and Giacomini,  M., 1998, “Intratracheal Pulmonary Ventilation at Low Airway Pressures in a Ventilator-Induced Model of Acute Respiratory Failure Improves Lung Function and Survival,” Chest, 114, pp. 1147–1157.
Hattler,  B. G., Gary,  D. R., Sawzik,  P. J., Lund,  L. W., Walters,  F. R., Shah,  A. S., Rawleigh,  J., Goode,  J. S., Klain,  M., and Borovetz,  H. S., 1994, “Development of an Intravenous Membrane Oxygenator: Enhanced Intravenous Gas Exchange Through Convective Mixing of Blood Around Hollow Fiber Membranes,” Artif. Organs, 18, pp. 806–812.
Federspiel,  W. J., Hewitt,  T., Hout,  M. S., Walters,  F. R., Lund,  L. W., Sawzik,  P. J., Reeder,  G., Borovetz,  H. S., and Hattler,  B. G., 1996, “Recent Progress in Engineering the Pittsburgh Intravenous Membrane Oxygenator,” ASAIO J., 42(5), pp. M435–M442.
Federspiel,  W. J., Golob,  J. F., Merrill,  T. L., Lund,  L. W., Bultman,  J. A., Frankowski,  B. J., Watach,  M., Litwak,  K., and Hattler,  B. G., 2000, “Ex-vivo Testing of the Membrane Oxygenator,” ASAIO J., 46, pp. 261–267.
Tao,  W., Zwischenberger,  J. B., Nguyen,  T. T., Tzouanakis,  A. E., Matheis,  E. J., Traber,  D. L., and Bidani,  A., 1994, “Performance of an Intravenous Gas Exchanger (IVOX) in a Venovenous Bypass Circuit,” Annals of Thoracic Surgery, 57, pp. 1484–1491.
Von Segesser,  L. K., Tonz,  M., Mihaljevic,  T., Marty,  B., Leskosek,  B., and Turina,  M., 1996, “Intravascular Oxygenation. Influence of the Host Vessel Diameter on Oxygen Transfer,” ASAIO J., 42(4), pp. 246–249.
Sueda,  T., Fukunaga,  S., Morita,  S., Sueshiro,  M., Hirai,  S., Okada,  K., Orihashi,  K., and Matsuura,  Y., 1997, “Development of an Intravascular Pumping Oxygenator Using a New Silicone Membrane,” Artif. Organs, 21, pp. 78–78.
Attinger,  E. O., 1969, “Wall Properties of Veins,” IEEE Trans. Biomed. Eng., 16, pp. 253–261.
Macha,  M., Federspiel,  W. J., Lund,  L. W., Sawzik,  P. J., Litwak,  P., Walters,  F. R., Reeder,  G. D., Borovetz,  H. S., and Hattler,  B. G., 1996, “Acute In-Vivo Studies of the Pittsburgh Intravenous Membrane Oxygenator,” ASAIO J., 42, pp. M609–M615.
Golob, J. F., Federspiel, W. J., Merrill, T. L., Frankowski, B. J., Litwak, K., Russian, H., and Hattler, B. G., 2000, “Acute In-Vivo Testing of an Intravascular Respiratory Support Catheter,” ASAIO J., (In press).
Ohhashi, T., Morimoto-Murase, K., and Kitoh, T., 1992, “Physiology and Functional Anatomy of the Venous System,” Veins: Their Functional Role in the Circulation, Springer-Verlag, New York, pp. 33–47.
Walden,  R., L’Italien,  G. J., Megerman,  J., and Abbott,  W. M., 1980, “Matched Elastic Properties and Successful Arterial Grafting,” Archives Surgery, 115, pp. 1166–1169.
Abbott, W. M., and Bouchier-Hayes, D. J., 1978, “The Role of Mechanical Properties in Graft Design,” Graft Materials in Vascular Surgery, Herbert Dardik, Chicago, pp. 59–78.
Lye,  C. R., Summer,  D. S., and Strandness,  D. E., 1975, “The Transcutaneous Measurement or the Elastic Properties of the Human Saphenous Vein Femoropopliteal Bypass Graft,” Surg. Gynecol. Obstet., 141, pp. 891–895.
Duncan,  D. D., Bargeron,  V. B., Borchardt,  S. E., Deters,  O. J., Gearhart,  S. A., Mark,  F. F., and Friedman,  M. H., 1990, “The Effect of Compliance on Wall Shear in Casts of a Human Aortic Bifurcation,” ASME J. Biomech. Eng., 112, pp. 183–188.
Benbrahim,  A., L’Italien,  G. J., Milinazzo,  B. B., Warnock,  D. F., Dhara,  S., Gertler,  J. P., Orkin,  R. W., and Abbott,  W. M., 1994, “A Compliant Tubular Device to Study the Influence of Wall Strain and Fluid Shear Stress on Cells of the Vascular Wall,” J. Vasc. Surg., 20, pp. 184–194.
Walker,  R. D., Smith,  R. E., Sheriff,  S. B., and Wood,  R. F. M., 1999, “Latex Vessel with Customized Compliance for Use in Arterial Flow Model,” Physiological Measurement, 20, pp. 277–286.
Vaslef,  S. N., Mockros,  L. F., Anderson,  R. W., and Leonard,  R. J., 1994, “Use of a Mathematical Model to Predict Oxygen Transfer Rates in Hollow Fiber Membrane Oxygenators,” ASAIO J., 40, pp. 990–996.


Grahic Jump Location
Experimental setup used to measure specific compliance of bovine vena cava segments and custom fabricated elastic tubes
Grahic Jump Location
In-vitro bench circuit for evaluation of gas exchange performance of respiratory support catheter using either rigid tube or custom compliant tube
Grahic Jump Location
Typical pressure-volume curves of excised bovine vena cava (a) and fabricated polyurethane tube (b). The data represent the mean ±SD obtained from 3 cycles.
Grahic Jump Location
Compliance curves obtained from experimentation with five bovine vena cava segments (a) and five polyurethane tubes (b). At physiological venous pressure (5–15 mmHg) the compliance of the custom tube is comparable than the vena cava compliance.
Grahic Jump Location
Oxygen (a) and carbon dioxide (b) exchange rates in nine experiment of a respiratory support catheter placed in rigid tube and custom compliant tube. The mean flowrate through the test section was maintained at 3.0 liters/minute over the range of pulsation rates. The gas exchange rates had been normalized to the surface area of the respiratory support catheter (A=0.21 m2 ); VCO2 also normalized to an inlet PCO2 of 50 mmHg. The difference in gas exchange in the model compliant vessel versus rigid tube was compared by Student’s t test (statistically difference at P<0.05* ).
Grahic Jump Location
Mean pressure drop and transmural pressure across the vessels test section measured over the range of pulsation rate
Grahic Jump Location
Respiratory support catheter into the custom compliant vessel during balloon pulsation at 0 bpm (a), 60bpm (b) and 240 bpm (c)




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In