Doyle, J. M., and Dobrin, P. B., 1971, “Finite Deformation Analysis of the Relaxed and Contracted Dog Carotid Artery,” Microvasc. Res., 3 , pp. 400–415.
[CrossRef]Holzapfel, G. A., Sommer, G., Gasser, C. T., and Regitnig, P., 2005, “Determination of Layer-Specific Mechanical Properties of Human Coronary Arteries With Nonatherosclerotic Intimal Thickening and Related Constitutive Modeling,” Am. J. Physiol. Heart Circ. Physiol., 289 , pp. H2048–2058.
[CrossRef]Humphrey, J. D., 2002, "Cardiovascular Solid Mechanics: Cells, Tissues, and Organs", Springer, New York.
Vito, R. P., and Dixon, S. A., 2003, “Blood Vessel Constitutive Models—1995–2002,” Annu. Rev. Biomed. Eng., 5 , pp. 413–439.
[CrossRef]von Maltzahn, W. W., Warriyar, R. G., and Keitzer, W. F., 1984, “Experimental Measurements of Elastic Properties of Media and Adventitia of Bovine Carotid Arteries,” J. Biomech., 17 , pp. 839–847.
[CrossRef]Carew, T. E., Vaishnav, R. N., and PatelD. J., 1968, “Compressibility of the Arterial Wall,” Circ. Res., 23 , pp. 61–68.
Chuong, C. J., and Fung, Y. C., 1984, “Compressibility and Constitutive Equation of Arterial Wall in Radial Compression Experiments,” J. Biomech., 17 , pp. 35–40.
[CrossRef]Chuong, C. J., and Fung, Y. C., 1983, “Three-Dimensional Stress Distribution in Arteries,” J. Biomech. Eng., 105 , pp. 268–274.
[CrossRef]Demiray, H., 1991, “A Layered Cylindrical Shell Model for an Aorta,” Int. J. Eng. Sci., 29 , pp. 47–54.
Fung, Y. C., Fronek, K., and Patitucci, P., 1979, “Pseudoelasticity of Arteries and the Choice of its Mathematical Expression,” Am. J. Physiol. Heart Circ. Physiol., 237 , pp. H620–H631.
Fung, Y. C., and Liu, S. Q., 1989, “Change of Residual Strains in Arteries due to Hypertrophy Caused by Aortic Constriction, Circ. Res., 65 , pp. 1340–1349.
Greenwald, S. E., Moore, J., Rachev, A., Kane, T. P., and Meister, J. J., 1997, “Experimental Investigation of the Distribution of Residual Strains in the Artery Wall,” J. Biomech. Eng., 119 , pp. 438–444.
[CrossRef]Humphrey, J. D., 1995, “Mechanics of the Arterial Wall: Review and Directions,” Crit. Rev. Biomed. Eng., 23 , pp. 1–162.
Lu, X., Pandit, A., and KassabG. S., 2004, “Biaxial Incremental Homeostatic Elastic Moduli of Coronary Artery: Two-Layer Model,” Am. J. Physiol. Heart Circ. Physiol., 287 , pp. H1663–1669.
[CrossRef]Pandit, A., Lu, X., Wang, C., and Kassab, G. S., 2005, “Biaxial Elastic Material Properties of Porcine Coronary Media and Adventitia, “Am. J. Physiol. Heart Circ. Physiol., 288 , pp. H2581–2587.
[CrossRef]Schulze-Bauer, C. A., and Holzapfel, G. A., 2003, “Determination of Constitutive Equations for Human Arteries From Clinical Data,” J. Biomech., 36 , pp.
165–169.
[CrossRef]Takamizawa, K., and Hayashi, K., 1987, “Strain Energy Density Function and Uniform Strain Hypothesis for Arterial Mechanics,” J. Biomech., 20 , pp. 7–17.
[CrossRef]von Maltzahn, W. W., Besdo, D., and Wiemer, W., 1981, “Elastic Properties of Arteries: A Nonlinear Two-Layer Cylindrical Model,” J. Biomech., 14 , pp. 389–397.
[CrossRef]Wang, C., Garcia, M., Lu, X., Lanir, Y., and Kassab, G. S., 2006, “Three-Dimensional Mechanical Properties of Porcine Coronary Arteries: A Validated Two-Layer Model,” Am. J. Physiol. Heart Circ. Physiol., 291 , pp. H1200–1209.
[CrossRef]Zhang, W., Wang, C., and Kassab, G. S., 2007, “The Mathematical Formulation of a Generalized Hooke’s Law for Blood Vessels,” Biomaterials, 28 , pp. 3569–3578.
[CrossRef]Clark, J. M., and Glagov, S., 1979, “Structural Integration of the Arterial Wall. I. Relationships and Attachments of Medial Smooth Muscle Cells in Normally Distended and Hyperdistended Aortas,” Lab. Invest., 40 , pp. 587–602.
Clark, J. M., and Glagov, S., “Transmural Organization of the Arterial Media. The Lamellar Unit Revisited,” Arteriosclerosis, 5 , pp. 19–34 (1985).
Wasano, K., and Yamamoto, T., 1983, “Tridimensional Architecture of Elastic Tissue in the Rat Aorta and Femoral Artery—A Scanning Electron Microscope Study,” J. Electron Microsc., 32 , pp. 33–44.
Gasser, T. C., Ogden, R. W., and Holzapfel, G. A., 2005, “Hyperelastic Modelling of Arterial Layers With Distributed Collagen Fibre Orientations,” J. R. Soc. Interface, 3 , pp. 15–35.
[CrossRef]Holzapfel, G. A., Gasser, T. C., and Ogden, R. W., 2004, “Comparison of a Multi-Layer Structural Model for Arterial Walls With a Fung-Type Model, and Issues of Material Stability,” J. Biomech. Eng., 126 , pp. 264–275.
[CrossRef]Holzapfel, G. A., Gasser, T. C., and Stadler, M., 2002, “A Structural Model for the Viscoelastic Behavior of Arterial Walls: Continuum Formulation and Finite Element Simulation,” Eur. J. Mech. A: Solids, 21 , pp. 441–463.
[CrossRef]Zulliger, M. A., Rachev, A., and Stergiopulos, N., 2004, “A Constitutive Formulation of Arterial Mechanics Including Vascular Smooth Muscle Tone,” Am. J. Physiol. Heart Circ. Physiol., 287 , pp. H1335–1343.
[CrossRef]Lanir, Y., 1983, “Constitutive Equations for Fibrous Connective Tissues,” J. Biomech., 16 , pp. 1–12.
[CrossRef]Lanir, Y., “A Structural Theory for the Homogeneous Biaxial Stress-Strain Relationships in Flat Collagenous Tissues,” J. Biomech.12 , pp. 423–436 (1979).
[CrossRef]Lanir, Y., 1978, “Structure-Function Relations in Mammalian Tendon: The Effect of Geometrical Nonuniformity,” J. Bioeng., 2 , pp. 119–128.
Sverdlik, A., and Lanir, Y., 2002, “Time-Dependent Mechanical Behavior of Sheep Digital Tendons, Including the Effects of Preconditioning,” J. Biomech. Eng., 124 , pp. 78–84.
[CrossRef]Lokshin, O., and Lanir, Y., 2009, “Micro and Macro Rheology of Planar Tissues,” Biomater., 30 (17), pp. 3118–3127.
Lokshin, O., and Lanir, Y., 2009, “Viscoelasticity and Preconditioning of Rat Skin Under Uniaxial Stretch: Microstructural Constitutive Characterization,” J. Biomech. Eng., 131 , p. 031009.
[CrossRef]Horowitz, A., Lanir, Y., Yin, F. C., Perl, M., Sheinman, I., and Strumpf, R. K., 1988, “Structural Three-Dimensional Constitutive Law for the Passive Myocardium,” J. Biomech. Eng.110 , pp. 200–207.
[CrossRef]Nevo, E., and Lanir, Y., 1989, “Structural Finite Deformation Model of the Left Ventricle During Diastole and Systole,” J. Biomech. Eng., 111 , pp. 342–349.
[CrossRef]Billiar, K. L., and Sacks, M. S., 1997, “A Method to Quantify the Fiber Kinematics of Planar Tissues Under Biaxial Stretch,” J. Biomech., 30 , pp. 753–756.
[CrossRef]Engelmayr, G. C., and Sacks, M. S., 2006, “A Structural Model for the Flexural Mechanics of Nonwoven Tissue Engineering Scaffolds,” J. Biomech. Eng., 128 , pp. 610–622.
[CrossRef]Sacks, M. S., 2003, “Incorporation of Experimentally-Derived Fiber Orientation Into a Structural Constitutive Model for Planar Collagenous Tissues,” J. Biomech. Eng., 125 , pp. 280–287.
[CrossRef]Sacks, M. S., Lam, T. V., and Mayer, J. E., 2004, “A Structural Constitutive Model for the Native Pulmonary Valve,” Conf. Proc. IEEE Eng. Med. Biol. Soc., 5 , pp. 3734–3736.
Roach, M. R., and Burton, A. C., 1957, “The Reason for the Shape of the Distensibility Curves of Arteries,” Can. J. Biochem. Physiol., 35 , pp. 681–690.
[CrossRef]Azuma, T., and Hasegawa, M., 1971, “A Rheological Approach to the Architecture of Arterial Walls,” Jpn. J. Physiol., 21 , pp. 27–47.
Azuma, T., and Oka, S., 1971, “Mechanical Equilibrium of Blood Vessel Walls,” Am. J. Physiol., 221 , pp. 1310–1318.
Oka, S., and Azuma, T., 1970, “Physical Theory of Tension in Thick-Walled Blood Vessels in Equilibrium,” Biorheology, 7 , pp. 109–117.
Hollander, Y., Durban, D., Lu, X., Kassab, G. S., and Lanir, Y., 2011, “Experimentally Validated Microstructural 3D Constitutive Model of Coronary Arterial Media,” J. Biomech. Eng., 133 , p. 031007.
[CrossRef]Dahl, S. L. M., Vaughn, M. E., and Niklason, L. E., 2007, “An Ultrastructural Analysis of Collagen in Tissue Engineered Arteries,” Ann. Biomed. Eng., 35 , pp. 1749–1755.
[CrossRef]O’Connell, M. K., Murthy, S., Phan, S., Xu, C., Buchanan, J., Spilker, R., Dalman, R. L., Zarins, C. K., Denk, W., and Taylor, C. A., 2008, “The Three-Dimensional Micro- and Nanostructure of the Aortic Medial Lamellar Unit Measured Using 3D Confocal and Electron Microscopy Imaging,” Matrix Biol., 27 , pp. 171–181.
[CrossRef]Wolinsky, H., and Glagov, S., 1967, “Nature of Species Differences in the Medial Distribution of Aortic Vasa Vasorum in Mammals,” Circ. Res., 20 , pp. 409–421.
Fung, Y. C., 1972, “Stress-Strain-History Relations of Soft Tissues in Simple Elongation,” "Biomechanics— Its Foundations and Objectives", Y.C.Fung, N.Perrone, and M.Anliker, eds., Prentice-Hall, Englewood Cliffs, NJ, pp. 181–208.
Deng, S. X., Tomioka, J., Debes, J. C., and Fung, Y. C., 1994, “New Experiments on Shear Modulus of Elasticity of Arteries,” Am. J. Physiol., 266 , pp. H1–10.
Guo, X., Lanir, Y., and Kassab, G. S., 2007, “Effect of Osmolarity on the Zero-Stress State and Mechanical Properties of Aorta,” Am. J. Physiol. Heart Circ. Physiol., 293 , pp. H2328–2334.
[CrossRef]Chuong, C. J., and Fung, Y. C., 1986, “On Residual Stresses in Arteries,” J. Biomech. Eng., 108 , pp. 189–192.
[CrossRef]Fung, Y. C., 1991, “What are the Residual Stresses Doing in our blood vessels?” Ann. Biomed. Eng., 19 , pp. 237–249.
[CrossRef]Fung, Y. C., and Liu, S. Q., 1992, “Strain Distribution in Small Blood Vessels With Zero-Stress State Taken Into Consideration,” Am. J. Physiol., 262 , pp. H544–552.
Omens, J. H., and Fung, Y. C., 1990, “Residual Strain in Rat Left Ventricle,” Circ. Res., 66 , pp. 37–45.
Lanir, Y., 2009, “Mechanisms of Residual Stress in Soft Tissues,” J. Biomech. Eng., 131 , p. 044506.
[CrossRef]Lanir, Y., Hayam, G., Abovsky, M., Zlotnick, Y., Uretzky, G., Nevo, E., and Ben-Haim, S. A., 1996, “Effect of Myocardial Swelling on Residual Strain in the Left Ventricle of the Rat,” Am. J. Physiol. Heart Circ. Physiol., 39 , pp. H1769–H1743.
Azeloglu, E. U., Albro, M. B., Thimmappa, V. A., Ateshian, G. A., and Costa, K. D., 2008, “Heterogeneous Transmural Proteoglycan Distribution Provides a Mechanism for Regulating Residual Stresses in the Aorta,” Am. J. Physiol. Heart Circ. Physiol., 294 , pp. H1197–1205.
[CrossRef]Fung, Y. C., 1993, "Biomechanics–Mechanical Properties of Living Tissues" (Springer, Berlin).
Adcock, S., GAUL, the Genetic Algorithm Utility Library, 2004.
Lu, X., Yang, J., Zhao, J. B., Gregersen, H., and Kassab, G. S., 2003, “Shear Modulus of Porcine Coronary Artery: Contributions of Media and Adventitia,” Am. J. Physiol. Heart Circ. Physiol., 285 , pp. 1966–1975.
Holzapfel, G. A., Gasser, T. C., and Ogden, R. W., 2000, “A New Constitutive Framework for Arterial Wall Mechanics and Comparative Study of Material Models,” J. Elasticity, 61 , pp. 1–48.
[CrossRef]Lanir, Y., 1996, “Plausibility of Structural Constitutive Equations for Swelling Tissues—Implications of the C-N and S-E Conditions,” J. Biomech. Eng.118 , pp. 10–16.
[CrossRef]