0
TECHNICAL PAPERS

Pulsatile Blood Flow Effects on Temperature Distribution and Heat Transfer in Rigid Vessels

[+] Author and Article Information
Oana I. Craciunescu

Department of Radiation Oncology, Duke University Medical Center, Box 3455, Durham, NC 27710

Scott T. Clegg

Cerprobe Corporation, Gilbert, AZ 85233

J Biomech Eng 123(5), 500-505 (May 16, 2001) (6 pages) doi:10.1115/1.1392318 History: Received September 03, 1998; Revised May 16, 2001
Copyright © 2001 by ASME
Your Session has timed out. Please sign back in to continue.

References

Field, S. B., and Hand, J. W., 1990, An Introduction to the Practical Aspects of Hyperthermia, Taylor & Francis, New York.
Dewhirst, M. W., and Samulski, T. V., 1988, Hyperthermia in the Treatment for Cancer, Upjohn, Kalamazoo, MI.
Oleson,  J. R., Sim,  D. A., and Manning,  M. R., 1984, “Analysis of Prognostic Variables in Hyperthermia Treatment of 161 Patients,” Int. J. Radiat. Oncol., Biol., Phys., 10, No. 12, pp. 2231–2239.
Clegg,  S. T., Das,  S. K., Fullar,  E., Anderson,  S., Blivin,  J., Oleson,  J. R., and Samulski,  T. V., 1996, “Hyperthermia Treatment Planning and Temperature Distribution Reconstruction: A Case Study,” Int. J. Hyperthermia, 12, No. 1,pp. 65–76.
Clegg,  S. T., and Roemer,  R. B., 1993, “Reconstruction of Experimental Hyperthermia Temperature Distributions: Application of State and Parameter Estimation,” ASME J. Biomech. Eng., 115, pp. 380–388.
Chato, J. C., 1990, “Fundamentals of Bioheat Transfer,” in: Thermal Dosimetry and Treatment Planning, M. Gautherie, ed., Springer-Verlag, pp. 1–56.
Crezee,  J., and Lagendijk,  J. J., 1992, “Temperature Uniformity During Hyperthermia: The Impact of Large Vessels,” Phys. Med. Biol., 35, pp. 905–923.
Rawnsley,  R. J., Roemer,  R. B., and Dutton,  A. W., 1994, “The Simulation of Discrete Vessel Effects in Experimental Hyperthermia,” ASME J. Biomech. Eng., 116, pp. 256–262.
Craciunescu,  O. I., Samulski,  T. V., MacFall,  J. R., and Clegg,  S. T., 2000, “Perturbations in Hyperthermia Temperature Distributions Associated With Counter-Current Flow: Numerical Simulations and Empirical Verification,” IEEE Trans. Biomed. Eng., 47, No. 4, pp. 435–443.
Weinbaum,  S., Jiji,  L. M., and Lemons,  D. E., 1984, “Theory and Experiment for the Effect of Vascular Microstructure on Surface Tissue Heat Transfer—Part I: Anatomical Foundation and Model Conceptualization,” ASME J. Biomech. Eng., 106, pp. 321–330.
Jiji,  L. M., Weinbaum,  S., and Lemons,  D. E., 1984, “Theory and Experiment for the Effect of Vascular Microstructure on Surface Tissue Heat Transfer—Part II: Model Formulation and Solution,” ASME J. Biomech. Eng., 106, pp. 331–341.
Chen,  M. M., and Holmes,  K. R., 1980, “Microvascular Contributions in Tissue Heat Transfer,” Ann. N.Y. Acad. Sci. , 335, pp. 137–150.
Womersley,  J. R., 1955, “Oscillatory Motion of a Viscous Liquid in a Thin Walled Elastic Tube. I: The Linear Approximation for Long Waves,” Philos. Mag., 46, pp. 199–221.
Uchida,  S., 1956, “The Pulsating Viscous Flow Superimposed on the Steady Laminar Motion of Incompressible Fluid in a Circular Pipe,” Z. Angew. Math. Phys., 7, pp. 403–422.
Atabek,  H. B., and Chang,  C. C., 1961, “Oscillatory Flow Near the Entry of a Circular Tube,” Z. Angew. Math. Phys., 12, pp. 185–201.
Ling,  S. C., and Atabek,  H. B., 1972, “A Nonlinear Analysis of Pulsatile Flow in Arteries,” J. Fluid Mech., 55, No. 3, pp. 493–511.
Chang,  L. J., and Tarbell,  J. M., 1985, “Numerical Simulation of Fully Developed Sinusoidal and Pulsatile (Physiological) Flow in Curved Tubes,” J. Fluid Mech., 161, pp. 175–198.
Cen,  R. J., Liu,  B. S., and Hwang,  N. H., 1987, “Developing Oscillatory Flow in a Circular Pipe: A New Solution,” ASME J. Biomech. Eng., 109, pp. 340–345.
Perktold,  K., Resch,  M., and Peter,  R. O., 1991, “Three-Dimensional Numerical Analysis of Pulsatile Flow and Wall Shear Stress in the Carotid Artery Bifurcation,” J. Biomech., 24, No. 6, pp. 409–420.
Perktold,  K., Nerem,  R. M., and Peter,  R. O., 1991, “A Numerical Calculation of Flow in a Curved Tube Model of the Left Main Coronary Artery,” J. Biomech., 24, No. 3/4, pp. 175–189.
Johnson,  G. A., Borowetz,  H. S., and Anderson,  J. L., 1992, “A Model of Pulsatile Flow in an Uniform Deformable Vessel,” J. Biomech., 25, No. 1, pp. 91–100.
Wang,  D. M., and Tarbell,  J. M., 1992, “Nonlinear Analysis of Flow in an Elastic Tube (Artery): Steady Streaming Effects,” J. Fluid Mech., 239, pp. 341–358.
Wang,  D. M., and Tarbell,  J. M., 1995, “Nonlinear Analysis of Oscillatory Flow, With a Nonzero Mean in an Elastic Tube (Artery),” ASME J. Biomech. Eng., 117, pp. 127–135.
Ballyk,  P. D., Steinman,  D. A., and Ethier,  C. R., 1994, “Simulation of Non-Newtonian Blood Flow in an End-to-Side Anastomosis,” Biorheology, 31, No. 5, pp. 565–586.
He,  X., and Ku,  D., 1994, “Unsteady Entrance Flow Development in a Straight Tube,” ASME J. Biomech. Eng., 116, pp. 355–360.
Sharp,  M. K., Thurston,  G. B., and Moore,  J. E., 1996, “The Effect of Blood Viscoelasticity on Pulsatile Flow in Stationary and Axially Moving Tubes,” Biorheology, 33, No. 3, pp. 185–208.
Siegel,  R., and Perlmutter,  M., 1962, “Heat Transfer for Pulsating Laminar Duct Flow,” ASME J. Heat Transfer, 84, pp. 111–123.
Cho,  H. W., and Hyun,  J. M., 1990, “Numerical Solution of Pulsating Flow and Heat Transfer Characteristics in a Pipe,” Int. J. Heat Fluid Flow, 11, No. 4, pp. 321–330.
Kim,  S. Y., Kang,  B. H., and Hyun,  J. M., 1993, “Heat Transfer in the Thermally Developing Region of a Pulsating Channel Flow,” Int. J. Heat Mass Transf., 36, No. 17, pp. 4257–4266.
Guo,  Z., and Sung,  H. J., 1997, “Analysis of the Nusselt Number in Pulsating Pipe Flow,” Int. J. Heat Mass Transf., 40, No. 10, pp. 2486–2489.
Moschandreou,  T., and Zamir,  M., 1997, “Heat Transfer in a Tube With Pulsating Flow and Constant Heat Flux,” Int. J. Heat Mass Transf., 40, No. 10, pp. 2461–2466.
Xu,  X. Y., Collins,  M. W., and Jones,  C. J. H., 1992, “Flow Studies in Canine Artery Bifurcations Using a Numerical Simulation Method,” ASME J. Biomech. Eng., 114, pp. 504–511.
Zienkiewicz, O. C., 1971, The Finite Element Method in Engineering Science, McGraw-Hill, London.
Kincaid, D., and Cheney, W., 1991, Numerical Analysis. Mathematics of Scientific Computing, Brooks/Cole Publishing Company, Pacific Grove, CA.
Schneck, D. J., 1995, “An Outline of Cardiovascular Structure and Function,” in: The Biomedical Engineering Handbook, J. D. Bronzino, ed., CRC Press, IEEE Press.
Dewhirst,  M. W., Kimura,  H., Rehmus,  S. W., Braun,  R. D., Papahadjopoulos,  D., Hong,  K., and Secomb,  T. W., 1996, “Microvascular Studies on the Origins of Perfusion-Limited Hypoxia,” Br. J. Cancer Suppl., 27, pp. S247–251.
McDonald, D. A., 1974, Blood Flow in Arteries, Williams & Wilkins, Baltimore, MD.
Mall,  F., 1888, “Die Blut- und Lymphwege in Dunndarm des hundes,” Abhadlungen der Kouigl gesellshaft der Wissenschaften Matematish-Physischem Classe, 14, pp. 151–200.

Figures

Grahic Jump Location
Two-dimensional axisymmetric model for the temperature distribution in pulsating blood flow
Grahic Jump Location
Computational mesh of elements used to solve the system of Eqs. (123). The specified points on the mesh represent points where computational results are plotted. The mesh is not drawn to scale.
Grahic Jump Location
Numerical temperature profiles along the radius at the exit cross section a-c (Fig. 2) for: (a) aorta; (b) large vessels; (c) terminal arteries and, with “x” marks, arterioles (Re* =0.08, α=0.017)
Grahic Jump Location
Temperature histories at points b and c in the computational mesh (see Fig. 2) for Womersley numbers corresponding to 60, 90, and 120 beats/min.: (a) aorta case (Re* =1667, α=7.25, 8.75, and 10.25) and large vessels (Re* =120, α=2, 3, and 4) for the center lamina point at the exit; (b) aorta case for the point near the wall (point b,r=0.9); (c) large vessels for the point near the wall (point b,r=0.9); (d) terminal arteries (Re* =20, α=0.6, 0.7, and 0.8) and arterioles (Re* =0.02, α=0.017), for both points b and c (r=0,r=0.9, respectively), “x” marks

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In