Experimental and Finite Element Comparison of Various Fixation Designs in Combined Loads

[+] Author and Article Information
A. Shirazi-Adl, O. Patenaude

Génie mécanique, École Polytechnique, Montréal, Québec, Canada

M. Dammak

LASEM, École Nationale d’lngénieurs de Sfax, Sfax, Tunisia

D. Zukor

Department of Orthopædic Surgery, Jewish General Hospital & McGill University, Montréal, Québec, Canada

J Biomech Eng 123(5), 391-395 (Apr 17, 2001) (5 pages) doi:10.1115/1.1395572 History: Received April 27, 2000; Revised April 17, 2001
Copyright © 2001 by ASME
Your Session has timed out. Please sign back in to continue.


Cameron,  H. U., Pilliar,  R. M., and Macnab,  I., 1973, “The Effect of Movement on the Bonding of Porous Metal to Bone,” J. Biomed. Mater. Res., 7, pp. 301–311.
Ducheyne,  P., DeMeester,  P., Aernoudt,  E., Martens,  M., and Mulier,  C., 1977, “Influences of a Functional Dynamic Loading on Bone Ingrowth Into Surface Pores of Orthopaedic Implants,” J. Biomed. Mater. Res., 11, pp. 811–838.
Pilliar,  R. M., Cameron,  H. U., Welsh,  R. P., and Binnington,  A. G., 1981, “Radiographic and Morphologic Studies of Load-Bearing Porous-Surfaced Structured Implants,” Clin. Orthop. Relat. Res., 156, pp. 249–257.
Bragdon,  C. R., Burke,  D., Lowenstein,  J. D., O’Connor,  D. O., Ramamurti,  B., Jasty,  M., and Harris,  W. H., 1996, “Differences in Stiffness of the Interface Between a Cementless Porous Implant and Cancellous Bone in Vivo in Dogs Due to Varying Amounts of Implant Motion,” J. Arthroplasty, 11, pp. 945–951.
Jasty,  M., Bragdon,  C. R., Burke,  D., O’Connor,  D., Lowenstein,  J., and Harris,  W., 1997, “In Vivo Skeletal Responses to Porous-Surfaced Implants Subjected to Small Induced Motions,” J. Bone Jt. Surg., Am. Vol., 79-A, pp. 707–714.
Jasty,  M., Bragdon,  C. R., Zalenski,  E., O’Connor,  D., Page,  A., and Harris,  W., 1997, “Enhanced Stability of Uncemented Canine Femoral Components by Bone Ingrowth Into the Porous Coatings,” J. Arthroplasty, 12, pp. 106–113.
Friedman,  R. J., Black,  J., Galante,  J. O., Jacobs,  J. J., and Skinner,  H. B., 1993, “Current Concepts in Orthopaedic Biomaterials and Implant Fixation,” J. Bone Jt. Surg., Am. Vol., 75-A, pp. 1086–1109.
Harris,  W. H., 1995, “The Problem is Osteolysis,” Clin. Orthop. Relat. Res., 311, pp. 46–53.
Bechtold, J. E., Soballe, K., Kubic, V., Overgaard, S., Lewis, J. L., and Gustilo, R. B., 1997, “Synergy Between Implant Motion and Particulate Polyethylene in the Formation of an Aggressive Periprosthetic Membrane,” Trans. 43rd Annu. Meet. — Orthop. Res. Soc., p. 767.
Kaiser,  A. D., and Whiteside,  L. A., 1990, “The Effect of Screws and Pegs on the Initial Fixation Stability of an Uncemented Unicondylar Knee Replacement,” Clin. Orthop. Relat. Res., 259, pp. 169–173.
Lee,  R. W., Volz,  R. G., and Sheridan,  D. C., 1991, “The Role of Fixation and Bone Quality on the Mechanical Stability of Tibial Knee Components,” Clin. Orthop. Relat. Res., 273, pp. 177–183.
Miura,  H., Whiteside,  L. A., Easley,  J. C., and Amador,  D. D., 1990, “Effect of Screws and a Sleeve on Initial Fixation in Uncemented Total Knee Tibial Components,” Clin. Orthop. Relat. Res., 259, pp. 160–168.
Summer, D. R., Berzins, A., and Turner, T. M., 1992, “Stability of the Tibial Tray in Cementless TKA: Initial Versus Late Post-Operative Motion,” Trans. 43rd Annu. Meet. — Orthop. Res. Soc., p. 268.
Volz,  R. G., Nisbet,  J. K., Lee,  R. W., and McMurtry,  M. G., 1988, “The Mechanical Stability of Various Noncemented Tibial Components,” Clin. Orthop. Relat. Res., 226, pp. 38–42.
Wyatt,  R. W. B., Alpert,  J. P., Daniels,  A. U., Hofmann,  A. A., and Dunn,  H. K., 1991, “The Effect of Screw Fixation on Initial Rigidity of Tibial Knee Components,” J. Appl. Biomater, 2, pp. 109–113.
Finlay,  J. B., Harada,  I., Bourne,  R. B., Rorabeck,  C. H., Hardie,  R., and Scott,  M. A., 1989, “Analysis of the Pull-out Strength of Screws and Pegs Used to Secure Tibial Components Following Total Knee Arthroplasty,” Clin. Orthop. Relat. Res., 247, pp. 220–231.
Shirazi-Adl,  A., Dammak,  M., and Zukor,  J., 1994, “Fixation Pull-out Response Measurement of Bone Screws and Porous-Surfaced posts,” J. Biomech., 27, pp. 1249–1258.
Hashemi,  A., and Shirazi-Adl,  A., 2000, “Finite Element Analysis of Tibial Implants—Effect of Fixation Design and Friction Model,” Comp. Meth. Biomech. Biomed. Eng., 3, pp. 183–201.
Keja,  M., Wevers,  H. W., Siu,  D., and Grootenboer,  H., 1994, “Relative Motion at the Bone–Prosthesis Interface,” Clin. Biomech. (Los Angel. Calif.), 9, pp. 275–283.
Rakotomanana,  R. L., Leyvraz,  P. F., Curnier,  A., Heegaard,  J. H., and Rubin,  P. J., 1992, “A Finite Element Model for Evaluation of Tibial Prosthesis–Bone Interface in Total Knee Replacement,” J. Biomech., 25, pp. 1413–1424.
Tissakht,  A., Eskandari,  H., and Ahmed,  A. M., 1995, “Micromotion Analysis of the Fixation of Total Knee Tibial Component,” Comput. Struct., 56, pp. 365–375.
Dammak,  M., Shirazi-Adl,  A., and Zukor,  D. J., 1997a, “Analysis of Cementless Implants Using Interface Nonlinear Friction—Experimental and Finite Element Studies,” J. Biomech., 30, pp. 121–129.
Dammak,  M., Shirazi-Adl,  A., Schwartz,  M., and Gustavson,  L., 1997b, “Friction Properties at the Bone–Metal Interface—Comparison of Four Different Porous Metal Surfaces,” J. Biomed. Mater. Res., 35, pp. 329–336.
Shirazi-Adl,  A., Dammak,  M., and Paiement,  G., 1993, “Experimental Determination of Friction Characteristics at the Trabecular Bone/Porous-Coated Metal Interface in Cementless Implants,” J. Biomed. Mater. Res., 27, pp. 167–175.
Hashemi,  A., Shirazi-Adl,  A., and Dammak,  M., 1996, “Bi-directional Friction Study of Cancellous Bone-Porous Coated Metal Interface,” J. Biomed. Mater. Res., 33, pp. 257–267.
Nissan,  M., 1980, “Review of Some Basic Assumptions in Knee Biomechanics,” J. Biomech., 13, pp. 375–381.
Shirazi-Adl,  A., and Forcione,  A., 1992, “Finite Element Stress Analysis of a Push-Out Test — Part II: Free Interface With Nonlinear Friction Properties,” ASME J. Biomech. Eng., 114, pp. 155–161.


Grahic Jump Location
Experimental setup of a metallic plate fixated to a polyurethane block with screws or posts. The dimensions, eccentric combined loading, and location of four LVDTs (D1 to D4) are shown. The load is applied and subsidence (D0) measured at 3 mm away from the right edge whereas liftoff displacements (D1 and D2) are measured 2 mm away from the left edge.
Grahic Jump Location
Typical finite element mesh of a plate with posts and the polyurethane block simulating the experimental studies
Grahic Jump Location
Measured (EXP) and computed finite element (FE) mean axial subsidence displacements under the load (D0) as a function of applied inclined force for various design cases
Grahic Jump Location
Measured (EXP) and computed finite element (FE) mean axial lift off displacements at the unloaded edge (D1) as a function of applied inclined force for various design cases
Grahic Jump Location
Measured mean variation of axial lift off at the unloaded edge (D1) under 1031 N inclined force as a function of fatigue load cycle for various design cases
Grahic Jump Location
Predicted effect of interface friction model on the lift off displacements (D1) for the design with porous-coated plate and posts shown as a function of applied inclined force




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In