0
TECHNICAL PAPERS

Noninvasive Fluid Dynamic Power Loss Assessments for Total Cavopulmonary Connections Using the Viscous Dissipation Function: A Feasibility Study

[+] Author and Article Information
Timothy M. Healy, Ajit P. Yoganathan

Georgia Tech/Emory University, Department of Biomedical Engineering, Atlanta, GA 30332

Carol Lucas

Biomedical Engineering Department, University of North Carolina, Chapel Hill, NC 27599

J Biomech Eng 123(4), 317-324 (Feb 08, 2001) (8 pages) doi:10.1115/1.1384875 History: Received March 07, 2000; Revised February 08, 2001
Copyright © 2001 by ASME
Your Session has timed out. Please sign back in to continue.

References

de Leval,  M. R., Kilner,  P., Gewillig,  M., and Bull,  C., 1988, “Total Cavo- pulmonary Connection: A Logical Alternative to Atriopulmonary Connection for Complex Fontan Operations. Experimental Studies and Early Clinical Experience,” J. Thorac. Cardiovasc. Surg., 96, pp. 682–695.
Jonas,  R. A., and Castaneda,  A. R., 1988, “Modified Fontan Procedure: Atrial Baffle and Systemic to Pulmonary Artery Anastomosis Technique,” J. Card. Surg., 3, pp. 91–96.
Puga,  F. I., Chiavarelli,  M., and Hagler,  D. J., 1987, “Modifications of the Fontan Operation Applicable to Patients With the Left Atrioventricular Valve Atresia or Single Atrioventricular Valve,” Circulation, 76, pp. III-53–III-60.
de Leval,  M. R., 1998, “The Fontan Circulation: What Have We Learned? What to Expect?” Pediatr. Cardiol., 19, pp. 316–320.
Sharma,  S., Goudy,  S., Walker,  P., Panchal,  S., Ensley,  A., Kanter,  K., Tam,  V., Fyfe,  D., and Yoganathan,  A., 1996, “In Vitro Flow Experiments for Determination of Optimal Geometry of Total Cavopulmonary Connection for Surgical Repair of Children With Functional Single Ventricle,” J. Am. Coll. Cardiol., 27, pp. 1264–1269.
Gerdes,  A., Kunze,  J., Pfister,  G., and Sievers,  H., 1999, “Addition of a Small Curvature Reduces Power Losses Across Total Cavopulmonary Connections,” Ann. Thoracic Surgery , 67, pp. 1760–1764.
Ensley,  A. E., Lynch,  P., Chatzimavroudis,  G. P., Lucas,  C., Sharma,  S., and Yoganathan,  A. P., 1999, “Toward Designing the Optimal Total Cavopulmonary Connection: An In Vitro Study,” Ann. Thoraci Surgery , 68, pp. 1384–1390.
Lardo,  A. C., Webber,  S. A., Friehs,  I., del Nido,  P. J., and Cape,  E. G., 1999, “Fluid Dynamic Comparison of Intra-Atrial and Extracardiac Total Cavopulmonary Connections,” J. Thorac. Cardiovasc. Surg., 117, pp. 697–704.
Ketner, M., Lucas, C., Masters, J., Mill, M., Lucas, W., Sadoff, J., Kiser, A., Hoffman, S., Yoganathan, A., and Ensley, A., 1999, “Energy Gains/Losses of Normal and Fontan Circulations in Lambs Under Varying Respiration Parameters,” Proc. Annual International Conference of the IEEE Engineering in Medicine and Biology, Vol. 1, p. 249.
Dubini,  G., de Leval,  M. R., Pietrabissa,  R., Montevecchi,  F. M., and Fumero,  R., 1996, “A Numerical Fluid Mechanical Study of Repaired Congenital Heart Defects: Application to the Total Cavopulmonary Connection,” J. Biomech., 29, pp. 111–121.
de Leval,  M. R., Dubini,  G., Migliavacca,  F., Jalali,  H., Camporini,  G., Redington,  A., and Pietrabissa,  R., 1996, “Surgery for Congenital Heart Disease,” J. Thorac. Cardiovasc. Surg., 111, pp. 502–513.
Migliavacca,  F., Kilner,  P. J., Pennati,  G., Dubini,  G., Pietrabissa,  R., Fumero,  R., and de Leval,  M. R., 1999, “Computational Fluid Dynamics and Magnetic Resonance Analysis of Flow Distribution Between the Lungs After Total Cavopulmonary Connection,” IEEE Trans. Biomed. Eng., 46, pp. 393–399.
Sheu,  T. W. H., Tsai,  S. F., Hwang,  W. S., and Chang,  T. M., 1999, “A Finite Element Study of the Blood Flow in Total Cavopulmonary Connection,” Comput. Fluids, 28, pp. 19–39.
Munson, B. R., Young, D. F., and Okiishi, T. H., 1994, Fundamentals of Fluid Mechanics, Wiley, New York.
Ku,  D. N., Biancheri,  C. L., Pettigrew,  R. I., Peifer,  J. W., Markou,  C. P., and Engels,  H., 1990, “Evaluation of Magnetic Resonance Velocimetry for Steady Flow,” ASME J. Biomech. Eng., 112, pp. 464–472.
Newling,  B., Gibbs,  S. J., Derbyshire,  J. A., Xing,  D., Hall,  L. D., Haycock,  D. E., Frith,  W. J., and Ablett,  S., 1997, “Comparison of Magnetic Resonance Imaging Velocimetry With Computational Fluid Dynamics,” ASME J. Fluids Eng., 119, pp. 103–109.
Weston,  S. J., Wood,  N. B., Tabor,  G., Gosman,  A. D., and Firmin,  D. N., 1998, “Combined MRI and CFD Analysis of Fully Developed Steady and Pulsatile Laminar Flow Through a Bend,” J. Magn. Reson. Imaging, 8, pp. 1158–1171.
Currie, I. G., 1993, Fundamental Mechanics of Fluids, McGraw-Hill, New York.
Ringgaard,  S., Botnar,  R. M., Djurhuus,  C., Stodkilde-Jorgensen,  H., Hasenkam,  J. M., Boesiger,  P., and Pedersen,  E. M., 1999, “High-Resolution Assessment of Velocity Fields and Shear Stresses Distal to Prosthetic Heart Valves Using High-Field Magnetic Resonance Imaging,” J. Heart Valve Dis., 8, pp. 96–103.
Morgan,  V. L., Roselli,  R. J., and Lorenz,  C. H., 1998, “Normal Three-Dimensional Pulmonary Artery Flow Determined by Phase Contrast Magnetic Resonance Imaging,” Ann. Biomed. Eng., 26, pp. 557–566.
Merrill,  E. W., and Pelletier,  G. A., 1967, “Viscosity of Human Blood: Transition From Newtonian to Non-Newtonian,” J. Appl. Physiol., 23, pp. 178–182.
Salim,  M. A., DiSessa,  T. G., Arheart,  K. L., and Alpert,  B. S., 1995, “Contribution of Superior Vena Caval Flow to Total Cardiac Output in Children,” Circulation, 92, pp. 1860–1865.
Houlind,  K., Stenbog,  E. V., Emmertsen,  K., Hansen,  O. K., Rybro,  L., and Hjortdal,  V. E., 1999, “Pulmonary and Caval Flow Dynamics After Total Cavopulmonary Connection,” Heart, 81, pp. 67–72.
Kiris,  C., Kwak,  D., Rogers,  S., and Chang,  I.-D., 1997, “Computational Approach for Probing the Flow Through Artificial Heart Devices,” ASME J. Biomech. Eng., 119, pp. 452–460.
Bovendeerd,  P. H. M., van Steenhoven,  A. A., van de Vosse,  F. N., and Vossers,  G., 1987, “Steady Entry Flow in a Curved Pipe,” J. Fluid Mech., 177, pp. 233–246.

Figures

Grahic Jump Location
Schematic showing reconstructed circulation resulting from total cavopulmonary connection surgery. The dashed box highlights the reconstructed region. Abbreviations are RA=right atrium, LA=left atrium, Ao=aorta,IVC=inferior vena cava,SVC=superior vena cava,LPA=left pulmonary artery, RPA=right pulmonary artery.
Grahic Jump Location
Coarse mesh discretization for circular tube model
Grahic Jump Location
Solid model representations of T-bifurcation models: (a) sharp bifurcation model, (b) filleted bifurcation model
Grahic Jump Location
Computational mesh used to compute pressure and velocity in the full TCPC model; the mesh consists of 76,388 nodes.
Grahic Jump Location
Comparison of experimental and computational dimensionless streamwise velocity profiles. Profiles at six stations on the symmetry plane of the duct are shown: (a) θ=4.6 deg, (b) θ=11.7 deg, (c) θ=23.4 deg, (d) θ=39.8 deg, (e) θ=58.5 deg, (f ) θ=81.9 deg.
Grahic Jump Location
Plot comparing traditional control volume technique to dissipation function estimates of power loss in the full TCPC model. For reference, mean power losses reported by Sharma et al. 5 are also shown. Error bars depict 95 percent confidence limits in the reported means.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In