0
TECHNICAL PAPERS

Computational Fluid Dynamics of a Vascular Access Case for Hemodialysis

[+] Author and Article Information
Bogdan Ene-Iordache, Lidia Mosconi, Andrea Remuzzi

Clinical Research Center for Rare Diseases Aldo e Cele Daccò, Mario Negri Institute for Pharmacological Research, Villa Camozzi, Ranica (BG), Italy

Giuseppe Remuzzi

Clinical Research Center for Rare Diseases Aldo e Cele Daccò, Mario Negri Institute for Pharmacological Research, Villa Camozzi, Ranica (BG), ItalyNephrology and Dialysis Unit, Azienda Ospedaliera Ospedali Riuniti di Bergamo, Bergamo, Italy

J Biomech Eng 123(3), 284-292 (Dec 13, 2000) (9 pages) doi:10.1115/1.1372702 History: Received November 30, 1999; Revised December 13, 2000
Copyright © 2001 by ASME
Your Session has timed out. Please sign back in to continue.

References

Feldman,  H. I., Kobrin,  S., and Wasserstein,  A., 1996, “Hemodialysis Vascular Access Morbidity,” J. Am. Soc. Nephrol., 7, pp. 523–535.
Yerdel,  M. A., Kesenci,  M., Yazicioglu,  K. M., Döseyen,  Z., Türkcapar,  A. G., and Anadol,  E., 1997, “Effect of Haemodynamic Variables on Surgically Created Arteriovenous Fistula Flow,” Nephrol. Dial Transplant, 12, pp. 1684–1688.
Kanterman,  R. Y., Vesely,  T. M., Pilgram,  T. K., Guy,  B. W., Windus,  D. W., and Picus,  D., 1995, “Dialysis Access Grafts: Anatomic Location of Venous Stenosis and Results of Angioplasty,” Radiology, 195, pp. 135–139.
Giddens,  D. P., Zarins,  C. K., and Glagov,  S., 1993, “The Role of Fluid Mechanics in the Localization and Detection of Atherosclerosis,” ASME J. Biomech. Eng., 115, pp. 588–594.
Ku,  D. N., Giddens,  D. P., Zarins,  C. K., and Glagov,  S., 1985, “Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation,” Arteriosclerosis 5, No. 3, pp. 293–302.
Salam,  T. A., Lumsden,  A. B., Suggs,  W. D., and Ku,  D. N., 1996, “Low Shear Stress Promotes Intimal Hyperplasia Thickening,” J. Vascular Investigation,2, No. 1, pp. 12–22.
Hehrlein,  C., 1995, “How do AV Fistulae Lose Function? The Role of Haemodynamics, Vascular Remodeling, and Intimal Hyperplasia,” Nephrol. Dial Transplant, 10, No. 8, pp. 1287–1290.
Dobrin,  P. B., Littooy,  F. N., and Endean,  E. D., 1989, “Mechanical Factors Predisposing to Intimal Hyperplasia and Medial Thickening in Autogenous Vein Grafts,” Surgery, 105, pp. 393–400.
Fillinger,  M. F., Reinitz,  E. R., Schwartz,  R. A., Resetarits,  D. E., Paskanik,  A. M., and Bredenberg,  C. E., 1989, “Beneficial Effects of Banding on Venous Intimal-Medial Hyperplasia in Arteriovenous Loop Grafts,” Am. J. Surg., 158, No. 2, pp. 87–94.
Girerd,  X., London,  G., Boutouyrie,  P., Mourad,  J. J., Safar,  M., and Laurent,  S., 1996, “Remodeling of the Radial Artery in Response to a Chronic Increase in Shear Stress,” Hypertension, 27, No. 3, pp. 799–803.
Vitali,  A., Salmoiraghi,  P., Butti,  I., Pompei,  L., Sarti,  E., Caverni,  L., Petroboni,  E., Merli,  R., and Remuzzi,  A., 2000, “Localization of Cerebral Arterovenous Malformations Using Digital Angiography,” Med. Phys., 27, No. 9, pp. 2024–2030.
Schroeder, W., Martin, K., and Lorensen, B., 1998, The Visualization Toolkit: An Object Oriented Approach to 3D Graphics, 2nd ed., Prentice-Hall, New Jersey.
Lorensen,  E., and Cline,  H. E., 1987, “Marching Cubes: A High Resolution 3D Surface Construction Algorithm,” Comput. Graph., 21, No. 4, pp. 163–169.
Deen, W. M., 1998, Analysis of Transport Phenomena, Oxford University Press, New York.
FIDAP User’s Manual, 1998, FIDAP 8, Fluent Inc., 10 Cavendish Court, Lebanon, NH.
Cokelet, G. R., 1987, “The Rheology and Tube Flow of Blood,” in: Handbook of Bioengineering, R. Skalak and S. Chien, eds., McGraw-Hill, New York.
Kawai, H., Fukada, E., Ibe, T., and Shono, H., 1965, “A New Capillary Viscometer for Measuring the Viscosity of Small Amounts of Blood,” in: Proc., Fourth International Congress on Rheology, A. L. Copley, ed., Interscience, New York, pp. 281–297.
Brooks,  D. E., Goodwin,  J. W., and Seaman,  G. V. F., 1970, “Interactions Among Erythrocytes Under Shear,” J. Appl. Physiol., 28, pp. 172–177.
Gijsen,  F. J. H., Brands,  P. J., van de Vosse,  F. N., and Janssen,  J. D., 1998, “Assessment of Wall Shear Rate Measurements With Ultrasound,” J. Vascular Investigation,4, pp. 187–196.
Caro,  C. G., Parker,  K. H., and Doorly,  D. J., 1995, “Essentials of Blood Flow,” Perfusion, 10, No. 3, pp. 131–134.
Prischl,  F. C., Kirchgatterer,  A., Brandstätter,  E., Wallner,  M., Baldinger,  C., Roithinger,  F. X., and Kramar,  R., 1995, “Parameters of Prognostic Relevance to the Patency of Vascular Access in Hemodialysis Patients,” J. Am. Soc. Nephrol., 6, pp. 1613–1618.
Davies,  P. F., Remuzzi,  A., Gordon,  E. J., Dewey,  C. F., and Gimbrone,  M. A., 1986, “Turbulent Fluid Shear Stress Induces Vascular Endothelial Cell Turnover in Vitro,” Proc. Natl. Acad. Sci. U.S.A., 83, pp. 2114–2117.
Friedman,  M. H., Deters,  O. J., Bargeron,  C. B., Hutchins,  G. M., and Mark,  F. F., 1986, “Shear-Dependent Thickening of the Human Arterial Intima,” Atherosclerosis, 60, pp. 161–171.
Nerem,  R. M., 1991, “Vascular Fluid Mechanics, the Arterial Wall, and Atherosclerosis,” ASME J. Biomech. Eng., 114, pp. 274–282.
Moore,  J. E., Xu,  C., Glagov,  S., Zarins,  C. K., and Ku,  D. N., 1994, “Fluid Wall Shear Stress Measurements in a Model of the Human Abdominal Aorta: Oscillatory Behavior and Relationship to Atherosclerosis,” Atherosclerosis, 110, pp. 225–240.
Remuzzi, A., Ene-Iordache, B., Veneziani, A., Pata, R., Caverni., L., and Belloni, G., 1996, “Three-Dimensional Geometrical Models of Carotid Bifurcation From Digital Angiography,” Books of Abstracts, Sloten, J. V., Lowet, G., Van Audekercke, R., and Van der Perre, G. eds., 10th Conference of the European Society of Biomechanics, Leuven, Aug. 28–31, 1996.
Perktold,  K., and Rappitsch,  G., 1995, “Computer Simulation of Local Blood Flow and Vessel Mechanics in a Compliant Carotid Artery Bifurcation Model,” J. Biomech., 28, No. 7, pp. 845–856.
DePaola,  N., Gimbrone,  M. A., Davies,  P. F., and Dewey,  C. F., 1992, “Vascular Endothelium Responds to Fluid Shear Stress Gradients,” Arterioscler. Thromb., 12, No. 11, pp. 1254–1257.
DePaola,  N., Davies,  P. F., Pritchard,  W. F., Florez,  L., Harbeck,  N., and Polacek,  D. C., 1999, “Spatial and Temporal Regulation of Gap Junction Connexin43 in Vascular Endothelial Cells Exposed to Controlled Disturbed Flows In Vitro,” Proc. Natl. Acad. Sci. U.S.A., 96, pp. 3154–3159.

Figures

Grahic Jump Location
Schematic drawing of the end-to-end arteriovenous fistula (AVF) created as a shunt between the radial artery and the cephalic vein
Grahic Jump Location
DSA images (orthogonal views) used for the three-dimensional reconstruction of the AVF
Grahic Jump Location
Scheme of the back-projection method. Volume of reconstruction (401×401×701 voxels) is symmetrically displaced around the center of rotation (O) of the C-arm of the angiograph.
Grahic Jump Location
Cross-sectional plane of the volume of reconstruction; ellipses represent the assumed vessel lumen profile
Grahic Jump Location
Three-dimensional meshwork used for finite element analysis. Elements are 8-node isoparametric brick type with trilinear velocities and discontinuous constant pressure; number of nodes is 38,482; the cross section is divided into 127 quadrilateral elements and has two boundary layers.
Grahic Jump Location
Centerline velocity measured with CDU in the radial artery of the fistula. Pulse frequency was 68 beats/min; radial artery diameter was 5.8 mm; calculated mean flow rate was 11.9 ml/s. Maximum and minimum flow occur at period fraction t/T=0.32 and t/T=0.90.
Grahic Jump Location
Velocity vector plot at t/T=0.32 (maximum flow rate) in a plane that cuts the bending and anastomosis zones of the AVF
Grahic Jump Location
Axial velocity vector plots in four planes that cut the AVF longitudinally at positions A,B,C, and D
Grahic Jump Location
Secondary velocity vector plots at four cross sections (A,B,C,D) of the AVF
Grahic Jump Location
Path plot of virtual massless particles moving near the wall on the ascending side of the fistula immediately after the arteriovenous anastomosis
Grahic Jump Location
Three-dimensional representation of axial velocity on the arterial side (A,B), near the anastomosis (C) and on the venous side (D) of the AVF at maximum flow rate; see Fig. 9 for the positions of vessel cross sections
Grahic Jump Location
Wall shear stress at the four cross sections of the AVF indicated in Fig. 9; see Fig. 9 for the positions of dimensionless perimeter

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In