Imparato,
A. M., Bracco,
A., Kim,
G. F. E., and Zeff,
R. Z., 1972, “Intimal and Neointimal Fibrous Proliferation Causing Failure of Arterial Reconstruction,” Surgery, 72, pp. 1007–1017.
Nikkari,
S. T., and Clowes,
A. W., 1994, “Restenosis After Vascular Reconstruction,” Ann. Med., 26, pp. 95–100.
Clowes, A. W., 1995, “Pathologic Intimal Hyperplasia As a Response to Vascular Injury and Reconstruction,” in: Vascular Surgery, R. B. Rutherford, ed., 4th ed., W. B. Saunders Company, Philadelphia, pp. 285–295.
Bassiouny,
H. S., White,
S., Glagov,
S., Choi,
E., Giddens,
D. P., and Zarins,
C. K., 1992, “Anastomotic Intimal Hyperplasia: Mechanical Injury or Flow Induced,” J. Vasc. Surg., 15, pp. 708–716;Discussion 716–717.
Logerfo,
F., Quist,
W., Nowak,
M., Crawshaw,
H., and Haudenschild,
C., 1983, “Downstream Anastomotic Hyperplasia. A Mechanism of Failure in Dacron Arterial Grafts,” Ann. Surg., 197, pp. 479–483.
Ojha,
M., 1993, “Spatial and Temporal Variations of Wall Shear Stress Within an End-to-Side Arterial Anastomosis Model,” J. Biomech., 26, pp. 1377–1388.
Ojha,
M., Ethier,
C., Johnston,
K., and Cobbold,
R., 1990, “Steady and Pulsatile Flow Fields in an End-to-Side Arterial Anastomosis Model,” J. Vasc. Surg., 12, pp. 747–753.
Steinman,
D., Vinh,
B., Ethier,
C., Ojha,
M., Cobbold,
R., and Johnston,
K., 1993, “A Numerical Simulation of Flow in a Two-Dimensional End-to-Side Anastomosis Model,” ASME J. Biomech. Eng., 115, pp. 112–118.
Sottiurai,
V. S., Yao,
J. S., Batson,
R. C., Sue,
S. L., Jones,
R., and Nakamura,
Y. A., 1989, “Distal Anastomotic Intimal Hyperplasia: Histopathologic Character and Biogenesis,” Ann. Vasc. Surg., 3, pp. 26–33.
Davies,
P. F., and Tripathi,
S. C., 1993, “Mechanical Stress Mechanisms and the Cell. an Endothelial Paradigm,” Circ. Res., 72, pp. 239–245.
Fry,
D. L., 1968, “Acute Vascular Endothelial Changes Associated With Increased Blood Velocity Gradients,” Circ. Res., 22, pp. 165–197.
Malek,
A. M., and Izumo,
S., 1995, “Control of Endothelial Cell Gene Expression by Flow,” J. Biomech., 28, pp. 1515–1528.
Resnick,
N., and Gimbrone,
M. A., 1995, “Hemodynamic Forces Are Complex Regulators of Endothelial Gene Expression,” FASEB J., 9, pp. 874–882.
Kleinstreuer,
C., Lei,
M., and Archie,
J. P., 1996, “Flow Input Waveform Effects on the Temporal and Spatial Wall Shear Stress Gradients in a Femoral Graft–Artery Connector,” ASME J. Biomech. Eng., 118, pp. 506–510.
Lei,
M., Kleinstreuer,
C., and Archie,
J. P., 1997, “Hemodynamic Simulations and Computer-Aided Designs of Graft–Artery Junctions,” ASME J. Biomech. Eng., 119, pp. 343–348.
Henry,
F., Collins,
M., Hughes,
P., and How,
T., 1996, “Numerical Investigation of Steady Flow in Proximal and Distal End-to-Side Anastomoses,” ASME J. Biomech. Eng., 118, pp. 302–310.
Inzoli,
F., Migliavacca,
F., and Pennati,
G., 1996, “Numerical Analysis of Steady Flow in Aorto-Coronary Bypass 3-D Model,” ASME J. Biomech. Eng., 118, pp. 172–179.
Crawshaw,
H. M., Quist,
W. C., Serallach,
E., Valeri,
C. R., and Logerfo,
F. W., 1980, “Flow Disturbance at the Distal End-to-Side Anastomosis. Effect of Patency of the Proximal Outflow Segment and Angle of Anastomosis,” Arch. Surg., 115, pp. 1280–1284.
Hofer,
M., Rappitsch,
G., Perktold,
K., Trubel,
W., and Schima,
H., 1996, “Numerical Study of Wall Mechanics and Fluid Dynamics in End-to-Side Anastomoses and Correlation to Intimal Hyperplasia,” J. Biomech., 29, pp. 1297–12308.
Loth,
F., Jones,
S., Giddens,
D., Bassiouny,
H., Glagov,
S., and Zarins,
C., 1997, “Measurements of Velocity and Wall Shear Stress Inside a PTFE Vascular Graft Model Under Steady Flow Conditions,” ASME J. Biomech. Eng., 119, pp. 187–194.
White,
S., Zarins,
C., Giddens,
D., Bassiouny,
H., Loth,
F., Jones,
S., and Glagov,
S., 1993, “Hemodynamic Patterns in Two Models of End-to-Side Vascular Graft Anastomoses: Effects of Pulsatility, Flow Division, Reynolds Number, and Hood Length,” ASME J. Biomech. Eng., 115, pp. 104–111.
Lei,
M., Archie,
J. P., and Kleinstreuer,
C., 1997, “Computational Design of a Bypass Graft That Minimizes Wall Shear Stress Gradients in the Region of the Distal Anastomosis,” J. Vasc. Surg., 25, pp 637–646.
Hsieh,
H. J., Li,
N. Q., and Frangos,
J. A., 1993, “Pulsatile and Steady Flow Induces C-Fos Expression in Human Endothelial Cells,” J. Cell Physiol., 154, pp. 143–151.
Ranjan,
V., and Diamond,
S. L., 1993, “Fluid Shear Stress Induces Synthesis and Nuclear Localization of C-Fos in Cultured Human Endothelial Cells,” Biochem. Biophys. Res. Commun., 196, pp. 79–84.
Hsieh,
H. J., Cheng,
C. C., Wu,
S. T., Chiu,
J. J., Wung,
B. S., and Wang,
D. L., 1998, “Increase of Reactive Oxygen Species (ROS) in Endothelial Cells by Shear Flow and Involvement of ROS in Shear-Induced C-Fos Expression,” J. Cell Physiol., 175, pp. 156–162.
Nagel,
T., Resnick,
N., Dewey,
C. F., and Gimbrone,
M. A., 1999, “Vascular Endothelial Cells Respond to Spatial Gradients in Fluid Shear Stress by Enhanced Activation of Transcription Factors,” Arterioscler., Thromb., Vasc. Biol., 19, pp. 1825–1834.
DePaola,
N., Gimbrone,
M. A., Davies,
P. F., and Dewey,
C. F., 1992, “Vascular Endothelium Responds to Fluid Shear Stress Gradients [Published Erratum Appears in Arterioscler. Thromb., 1993 Mar;13(3):465],” Arterioscler. Thromb., 12, pp. 1254–1257.
Liu,
S. Q., 1999, “Focal Expression of Angiotensin II Type 1 Receptor and Smooth Muscle Cell Proliferation in the Neointima of Experimental Vein Grafts: Relation to Eddy Blood Flow,” Arterioscler., Thromb., Vasc. Biol., 19, pp. 2630–2639.
Bertolotti,
C., and Deplano,
V., 2000, “Three-Dimensional Numerical Simulations of Flow Through a Stenosed Coronary Bypass [in Process Citation],” J. Biomech., 33, pp. 1011–1022.
Hughes,
P., and How,
T., 1996, “Effects of Geometry and Flow Division on Flow Structures in Models of the Distal End-to-Side Anastomosis,” J. Biomech., 29, pp. 855–872.
Li,
X.-M. and Rittgers,
S. E., 1999, “Hemodynamic Factors at the Distal End-to-Side Anastomosis of a Bypass Graft With Different POS:DOS Ratios,” Proc. ASME Bioengineering Conference, ASME BED-Vol. 42, pp. 225–226.
Perktold,
K., Resch,
M., and Peter,
R., 1991, “Three- Dimensional Numerical Analysis of Pulsatile Flow and Wall Shear Stress in the Carotid Artery Bifurcation,” J. Biomech., 24, pp. 409–420.
Fei,
D. Y., Thomas,
J. D., and Rittgers,
S. E., 1994, “The Effect of Angle and Flow Rate Upon Hemodynamics in Distal Vascular Graft Anastomoses: a Numerical Model Study,” ASME J. Biomech. Eng., 116, pp. 331–336.
Moore,
J. A., Steinman,
D. A., Prakash,
S., Johnston,
K. W., and Ethier,
C. R., 1999, “A Numerical Study of Blood Flow Patterns in Anatomically Realistic and Simplified End-to-Side Anastomoses,” ASME J. Biomech. Eng., 121, pp. 265–272.
Okadome,
K., Yukizane,
T., Mii,
S., and Sugimachi,
K., 1990, “Ultrastructural Evidence of the Effects of Shear Stress Variation on Intimal Thickening in Dogs With Arterially Transplanted Autologous Vein Grafts,” J. Cardiovasc. Surg. (Torino), 31, pp. 719–726.
Painter,
T. A., 1991, “Myointimal Hyperplasia: Pathogenesis and Implications. 2. Animal Injury Models and Mechanical Factors,” Artif. Organs, 15, pp. 103–118.
Ishibashi,
H., Sunamura,
M., and Karino,
T., 1995, “Flow Patterns and Preferred Sites of Intimal Thickening in End-to-End Anastomosed Vessels,” Surgery, 117, pp. 409–420.
Cucina,
A., Sterpetti,
A. V., Borrelli,
V., Pagliei,
S., Cavallaro,
A., and D’Angelo,
L. S., 1998, “Shear Stress Induces Transforming Growth Factor-Beta 1 Release by Arterial Endothelial Cells,” Surgery, 123, pp. 212–217.
Huynh,
T. T., Davies,
M. G., Trovato,
M. J., Svendsen,
E., and Hagen,
P. O., 1999, “Alterations in Wall Tension and Shear Stress Modulate Tyrosine Kinase Signaling and Wall Remodeling in Experimental Vein Grafts,” J. Vasc. Surg., 29, pp. 334–344.
Keynton,
R.S., Evancho,
M. M., Sims,
R. L., and Rittgers,
S. E., 1999, “The Effect of Graft Caliber Upon Wall Shear Within in Vivo Distal Vascular Anastomoses,” ASME J. Biomech. Eng., 121, pp. 79–88.
Ray,
L, O’Connor,
J., Davis,
C., Hall,
D., Mansfield,
P., Rittenhouse,
E., Smith,
J., Wood,
S., and Sauvage,
L., 1979, “Axillofemoral Bypass: a Critical Reappraisal of Its Role in the Management of Aortoiliac Occlusive Disease,” Am. J. Surg., 138, pp. 117–128.