0
TECHNICAL PAPERS

Hemodynamic Factors at the Distal End-to-Side Anastomosis of a Bypass Graft With Different POS:DOS Flow Ratios

[+] Author and Article Information
Xue-Mei Li, Stanley E. Rittgers

Department of Biomedical Engineering, The University of Akron, Akron, OH 44325-0302

J Biomech Eng 123(3), 270-276 (Dec 13, 2000) (7 pages) doi:10.1115/1.1372323 History: Received May 25, 1999; Revised December 13, 2000
Copyright © 2001 by ASME
Your Session has timed out. Please sign back in to continue.

References

Echave,  V., Koornick,  A. R., and Haimov,  M., 1979, “Intimal Hyperplasia as a Complication of the Use of the Polytetrafluoroethylene Graft for Femoral-Popliteal Bypass,” Surgery, 86, pp. 791–798.
Imparato,  A. M., Brocco,  A., Kim,  G. E., and Zeff,  R., 1972, “Intimal and Neointimal Fibrous Proliferation Causing Failure of Arterial Reconstructions,” Surgery, 72, pp. 1007–1014.
LoGerfo,  F. W., Quist,  W. C., Nowak,  M. D., Crawshaw,  H. M., and Haudenschild,  C. C., 1983, “Downstream Anastomotic Hyperplasia,” Ann. Surg., 197, pp. 479–483.
De Weese, J. A., 1985, “Anastomotic Neointimal Fibrous Hyperplasia,” in: Complications in Vascular Surgery, 2nd ed., Bernhard, V. M., and Tourne, J. B., eds., Grune & Stratton, New York.
Dilley,  R. J., McGeachie,  J. K., and Prendergast,  F. J., 1988, “A Review of the Histologic Changes in Vein-to-Artery Grafts With Particular Reference to Intimal Hyperplasia,” Arch. Surg., 123, pp. 691–696.
Sottiurai,  V. S., Yao,  J. S. T., Batson,  R. C., Sue,  S. L., Jones,  R., and Nakamura,  Y. A., 1989, “Distal Anastomotic Intimal Hyperplasia: Histopathologic Character and Biogenesis,” Ann. Vasc. Surg., 3, pp. 26–33.
Bassiouny,  H. S., White,  S. S., Glagov,  S., Choi,  E., Giddens,  D. P., and Zarins,  C. K., 1992, “Anastomotic Intimal Hyperplasia: Mechanical Injury or Flow Induced?” J. Vasc. Surg., 15, pp. 708–717.
White,  S. S., Zarins,  C. K., Giddens,  D. P., Bassiouny,  H. S., Loth,  F., Jones,  S. A., and Glagov,  S., 1993, “Hemodynamic Patterns in Two Flow Models of End-to-Side Vascular Graft Anastomoses: Effects of Pulsatility, Flow Division, Reynolds Number and Hood Length,” ASME J. Biomech. Eng., 115, pp. 104–111.
Keynton,  R. S., Rittgers,  S. E., and Shu,  M. C. S., 1991, “The Effect of Angle and Flow Rate Upon Hemodynamics in Distal Vascular Graft Anastomoses: An In Vitro Model Study,” ASME J. Biomech. Eng., 113, pp. 458–463.
Hofer,  M., Rappitsch,  G., Perktold,  K., Trubel,  W., and Schima,  H., 1996, “Numerical Study of Wall Mechanics and Fluid Dynamics in End-to-Side Anastomoses and Correlation to Intimal Hyperplasia,” J. Biomech., 29, pp. 1297–1308.
Hughes,  P. E., and How,  T. V., 1996, “Effects of Geometry and Flow Division on Flow Structures in Models of the Distal End-to-Side Anastomosis,” J. Biomech., 29, pp. 855–872.
Ethier,  C. R., Steinman,  D. A., Zhang,  X., Karpik,  S. R., and Ojha,  M., 1998, “Flow Waveform Effects on End-to-Side Anastomotic Flow Patterns,” J. Biomech., 31, pp. 609–617.
Keynton, R. S., Evancho, M. M., Sims, R. L., Rodway, N., and Rittgers, S. E., 1995, “Direct Relationship Between Wall Shear Rate and Intimal Hyperplasia in Vascular Bypass Grafts,” in: Advances in Bioengineering, Hull, M. L., ed., ASME BED-Vol. 31, pp. 169–170.
Loth, F., Jones, S. A., Giddens, D. P., Bassiouny, H. S., Glagov, S., and Zarins, C. K., 1995, “A Correlative Study of Intimal Thickening and Wall Shear Stress Inside a Canine Vascular Graft Model,” in: Advances in Bioengineering, Hull, M. L., ed., ASME BED-Vol. 31, pp. 167–168.
Keynton, R. S., 1995: “The Effect of Graft Caliber Upon Hemodynamics and Intimal Hyperplasia in the Distal Anastomoses of Chronic Vascular Bypass Grafts,” Ph.D. Dissertation, The University of Akron, OH.
Loth, F., 1993, “Velocity and Wall Shear Measurements Inside a Vascular Graft Model Under Steady and Pulsatile Flow Conditions,” Ph.D. Dissertation, Georgia Institute of Technology.
Loth,  F., Jones,  S. A., Giddens,  D. P., Bassiouny,  H. S., Glagov,  S., and Zarins,  C. K., 1997, “Measurements of Velocity and Wall Shear Stress Inside a PTFE Vascular Graft Model Under Steady Flow Conditions,” ASME J. Biomech. Eng., 119, pp. 187–194.
He,  X., and Ku,  D. N., 1996, “Pulsatile Flow in the Human Left Coronary Artery Bifurcation: Average Conditions,” ASME J. Biomech. Eng., 118, pp. 74–82.
Fatemi,  R. S., and Rittgers,  S. E., 1994, “Derivation of Shear Rates From Near-Wall LDA Measurements Under Steady and Pulsatile Flow Conditions,” ASME J. Biomech. Eng., 116, pp. 361–368.
Loth, F., Jones, S. A., Giddens, D. P., and Brossolet, L.-J., 1994, “Accuracy of Wall Shear Stress Estimates From Laser Doppler Anemometry Measurements Under Unsteady Flow Conditions,” in: Advances in Bioengineering, Askew, M. J., ed., ASME BED-Vol. 28, pp. 307–308.
Ojha,  M., 1993, “Spatial and Temporal Variations of Wall Shear Stress Within an End-to-Side Arterial Anastomosis Model,” J. Biomech., 26, pp. 1377–1388.
Loth, F., Jones, S. A., Giddens, D. P., Bassiouny, H. S., Glagov, S., and Zarins, C. K., 1995, “Wall Shear Stress Measurements Inside a Vascular Graft Model Under Pulsatile Flow Conditions,” in: Advances in Bioengineering, Hochmuth, R. M., Langrana, N. A., and Hefzy, M. S., eds., ASME BED-Vol. 29, pp. 9–10.
Davies,  P. F., 1995, “Flow-Mediated Endothelial Mechanotransduction,” Physiol. Rev., 75, pp. 519–560.
Helmlinger,  G., Geiger,  R. V., Schreck,  S., and Nerem,  R. M., 1991, “Effects of Pulsatile Flow on Cultured Vascular Endothelial Cell Morphology,” ASME J. Biomech. Eng., 113, pp. 123–131.
Thoumine,  O., Nerem,  R. M., and Girard,  P. R., 1995, “Oscillatory Shear Stress and Hydrostatic Pressure Modulate Cell-Matrix Attachment Proteins in Cultured Endothelial Cells,” In Vitro Cell Dev. Biol., 31A, pp. 45–54.
Bao,  X. P., and Frangos,  J. A., 1997, “NO Regulates PDGF-A and MCP-1 Expression Induced by Gradients in Shear Stress in Endothelial Cells,” Ann. Biomed. Eng., 25(S1), pp. S-53.
Ziegler,  T., Bouzourene,  K., Harrison,  V. J., Brunner,  H. R., and Hayoz,  D., 1998, “Influence of Oscillatory and Unidirectional Flow Environments on the Expression of Endothelin and Nitric Oxide Synthase in Cultured Endothelial Cells,” Arterioscler., Thromb., Vasc. Biol., 18, pp. 686–692.

Figures

Grahic Jump Location
Mock pulsatile flow system showing distal anastomosis model, proximal (POS) and distal (DOS) outflow segments, and LDA measurement device
Grahic Jump Location
Typical graft inlet flow waveform
Grahic Jump Location
Axial positions along graft hood and artery floor for velocity measurements
Grahic Jump Location
Illustration of flow streamline patterns during late diastole for (a) Case 1 (POS:DOS=0:100), (b) Case 2 (POS:DOS=25:75) and (c) Case 3 (POS:DOS=50:50). Bold arrows indicate the ranges of movement and the direction of the stagnation point from systole to diastole (see text for further explanation).
Grahic Jump Location
Spatial distributions of mean wall shear stress: (ac) along the artery floor for Cases 1–3, respectively, and (df ) along the graft hood for Cases 1–3, respectively
Grahic Jump Location
Zero WSS plane (black: WSS≥0 and white: WSS<0): (ac) along the artery floor for Cases 1–3, respectively and (df ) along the graft hood for Cases 1–3, respectively

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In