Echave,
V., Koornick,
A. R., and Haimov,
M., 1979, “Intimal Hyperplasia as a Complication of the Use of the Polytetrafluoroethylene Graft for Femoral-Popliteal Bypass,” Surgery, 86, pp. 791–798.
Imparato,
A. M., Brocco,
A., Kim,
G. E., and Zeff,
R., 1972, “Intimal and Neointimal Fibrous Proliferation Causing Failure of Arterial Reconstructions,” Surgery, 72, pp. 1007–1014.
LoGerfo,
F. W., Quist,
W. C., Nowak,
M. D., Crawshaw,
H. M., and Haudenschild,
C. C., 1983, “Downstream Anastomotic Hyperplasia,” Ann. Surg., 197, pp. 479–483.
De Weese, J. A., 1985, “Anastomotic Neointimal Fibrous Hyperplasia,” in: Complications in Vascular Surgery, 2nd ed., Bernhard, V. M., and Tourne, J. B., eds., Grune & Stratton, New York.
Dilley,
R. J., McGeachie,
J. K., and Prendergast,
F. J., 1988, “A Review of the Histologic Changes in Vein-to-Artery Grafts With Particular Reference to Intimal Hyperplasia,” Arch. Surg., 123, pp. 691–696.
Sottiurai,
V. S., Yao,
J. S. T., Batson,
R. C., Sue,
S. L., Jones,
R., and Nakamura,
Y. A., 1989, “Distal Anastomotic Intimal Hyperplasia: Histopathologic Character and Biogenesis,” Ann. Vasc. Surg., 3, pp. 26–33.
Bassiouny,
H. S., White,
S. S., Glagov,
S., Choi,
E., Giddens,
D. P., and Zarins,
C. K., 1992, “Anastomotic Intimal Hyperplasia: Mechanical Injury or Flow Induced?” J. Vasc. Surg., 15, pp. 708–717.
White,
S. S., Zarins,
C. K., Giddens,
D. P., Bassiouny,
H. S., Loth,
F., Jones,
S. A., and Glagov,
S., 1993, “Hemodynamic Patterns in Two Flow Models of End-to-Side Vascular Graft Anastomoses: Effects of Pulsatility, Flow Division, Reynolds Number and Hood Length,” ASME J. Biomech. Eng., 115, pp. 104–111.
Keynton,
R. S., Rittgers,
S. E., and Shu,
M. C. S., 1991, “The Effect of Angle and Flow Rate Upon Hemodynamics in Distal Vascular Graft Anastomoses: An In Vitro Model Study,” ASME J. Biomech. Eng., 113, pp. 458–463.
Hofer,
M., Rappitsch,
G., Perktold,
K., Trubel,
W., and Schima,
H., 1996, “Numerical Study of Wall Mechanics and Fluid Dynamics in End-to-Side Anastomoses and Correlation to Intimal Hyperplasia,” J. Biomech., 29, pp. 1297–1308.
Hughes,
P. E., and How,
T. V., 1996, “Effects of Geometry and Flow Division on Flow Structures in Models of the Distal End-to-Side Anastomosis,” J. Biomech., 29, pp. 855–872.
Ethier,
C. R., Steinman,
D. A., Zhang,
X., Karpik,
S. R., and Ojha,
M., 1998, “Flow Waveform Effects on End-to-Side Anastomotic Flow Patterns,” J. Biomech., 31, pp. 609–617.
Keynton, R. S., Evancho, M. M., Sims, R. L., Rodway, N., and Rittgers, S. E., 1995, “Direct Relationship Between Wall Shear Rate and Intimal Hyperplasia in Vascular Bypass Grafts,” in: Advances in Bioengineering, Hull, M. L., ed., ASME BED-Vol. 31, pp. 169–170.
Loth, F., Jones, S. A., Giddens, D. P., Bassiouny, H. S., Glagov, S., and Zarins, C. K., 1995, “A Correlative Study of Intimal Thickening and Wall Shear Stress Inside a Canine Vascular Graft Model,” in: Advances in Bioengineering, Hull, M. L., ed., ASME BED-Vol. 31, pp. 167–168.
Keynton, R. S., 1995: “The Effect of Graft Caliber Upon Hemodynamics and Intimal Hyperplasia in the Distal Anastomoses of Chronic Vascular Bypass Grafts,” Ph.D. Dissertation, The University of Akron, OH.
Loth, F., 1993, “Velocity and Wall Shear Measurements Inside a Vascular Graft Model Under Steady and Pulsatile Flow Conditions,” Ph.D. Dissertation, Georgia Institute of Technology.
Loth,
F., Jones,
S. A., Giddens,
D. P., Bassiouny,
H. S., Glagov,
S., and Zarins,
C. K., 1997, “Measurements of Velocity and Wall Shear Stress Inside a PTFE Vascular Graft Model Under Steady Flow Conditions,” ASME J. Biomech. Eng., 119, pp. 187–194.
He,
X., and Ku,
D. N., 1996, “Pulsatile Flow in the Human Left Coronary Artery Bifurcation: Average Conditions,” ASME J. Biomech. Eng., 118, pp. 74–82.
Fatemi,
R. S., and Rittgers,
S. E., 1994, “Derivation of Shear Rates From Near-Wall LDA Measurements Under Steady and Pulsatile Flow Conditions,” ASME J. Biomech. Eng., 116, pp. 361–368.
Loth, F., Jones, S. A., Giddens, D. P., and Brossolet, L.-J., 1994, “Accuracy of Wall Shear Stress Estimates From Laser Doppler Anemometry Measurements Under Unsteady Flow Conditions,” in: Advances in Bioengineering, Askew, M. J., ed., ASME BED-Vol. 28, pp. 307–308.
Ojha,
M., 1993, “Spatial and Temporal Variations of Wall Shear Stress Within an End-to-Side Arterial Anastomosis Model,” J. Biomech., 26, pp. 1377–1388.
Loth, F., Jones, S. A., Giddens, D. P., Bassiouny, H. S., Glagov, S., and Zarins, C. K., 1995, “Wall Shear Stress Measurements Inside a Vascular Graft Model Under Pulsatile Flow Conditions,” in: Advances in Bioengineering, Hochmuth, R. M., Langrana, N. A., and Hefzy, M. S., eds., ASME BED-Vol. 29, pp. 9–10.
Davies,
P. F., 1995, “Flow-Mediated Endothelial Mechanotransduction,” Physiol. Rev., 75, pp. 519–560.
Helmlinger,
G., Geiger,
R. V., Schreck,
S., and Nerem,
R. M., 1991, “Effects of Pulsatile Flow on Cultured Vascular Endothelial Cell Morphology,” ASME J. Biomech. Eng., 113, pp. 123–131.
Thoumine,
O., Nerem,
R. M., and Girard,
P. R., 1995, “Oscillatory Shear Stress and Hydrostatic Pressure Modulate Cell-Matrix Attachment Proteins in Cultured Endothelial Cells,” In Vitro Cell Dev. Biol., 31A, pp. 45–54.
Bao,
X. P., and Frangos,
J. A., 1997, “NO Regulates PDGF-A and MCP-1 Expression Induced by Gradients in Shear Stress in Endothelial Cells,” Ann. Biomed. Eng., 25(S1), pp. S-53.
Ziegler,
T., Bouzourene,
K., Harrison,
V. J., Brunner,
H. R., and Hayoz,
D., 1998, “Influence of Oscillatory and Unidirectional Flow Environments on the Expression of Endothelin and Nitric Oxide Synthase in Cultured Endothelial Cells,” Arterioscler., Thromb., Vasc. Biol., 18, pp. 686–692.