0
TECHNICAL BRIEF

Biphasic Poroviscoelastic Simulation of the Unconfined Compression of Articular Cartilage: II—Effect of Variable Strain Rates

[+] Author and Article Information
Mark R. DiSilvestro, Qiliang Zhu, Jun-Kyo Francis Suh

Department of Biomedical Engineering, Tulane University, New Orleans, LA 70118

J Biomech Eng 123(2), 198-200 (Oct 01, 2000) (3 pages) doi:10.1115/1.1351887 History: Received December 01, 1999; Revised October 01, 2000
Copyright © 2001 by ASME
Your Session has timed out. Please sign back in to continue.

References

DiSilvestro,  M. R., Zhu,  Q., Wong,  M., Jurvelin,  J. S., and Suh,  J-K. F., 2001, “Biphasic Poroviscoelastic Simulation of the Unconfined Compression of Articular Cartilage—I: Simultaneous Prediction of Reaction Force and Lateral Displacement,” ASME J. Biomech. Eng., 123, No. 2, pp. 191–197.
Mow,  V. C., Kuei,  S. C., Lai,  W. M., and Armstrong,  C. G., 1980, “Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiments,” ASME J. Biomech. Eng., 102, pp. 73–84.
Cohen,  B., Lai,  W. M., and Mow,  V. C., 1998, “A Transversely Isotropic Biphasic Model for Unconfined Compression of Growth Plate and Chondroepiphysis,” ASME J. Biomech. Eng., 120, pp. 491–496.
Mak,  A. F., 1986, “The Apparent Viscoelastic Behavior of Articular Cartilage—The Contributions From the Intrinsic Matrix Viscoelasticity and Interstitial Fluid Flows,” ASME J. Biomech. Eng., 108, pp. 123–130.
Suh,  J-K., and Bai,  S., 1998, “Finite Element Formulation of Biphasic Poroviscoelastic Model for Articular Cartilage,” ASME J. Biomech. Eng., 120, pp. 195–201.
Brown,  T. D., and Singerman,  R. J., 1986, “Experimental Determination of the Linear Biphasic Constitutive Coefficients of Human Fetal Proximal Femoral Chondroepiphysis,” J. Biomech., 19, No. 8, pp. 597–605.
Joshi,  M. D., Suh,  J-K., Marui,  T., and Woo,  S. L-Y., 1995, “Interspecies Comparison of Mechanical Properties of Meniscus,” J. Biomed. Mater. Res., 29, pp. 823–828.
Storn,  R., and Price,  K., 1997, “Differential Evolution—A Simple and Efficient Heuristic for Global Optimization Over Continuous Spaces,” J. Global Optim., 11, pp. 341–359.
Armstrong,  C. G., Lai,  W. M., and Mow,  V. C., 1984, “An Analysis of the Unconfined Compression of Articular Cartilage,” ASME J. Biomech. Eng., 106, pp. 165–173.
Suh,  J-K., and DiSilvestro,  M. R., 1999, “Biphasic Poroviscoelastic Behavior of Hydrated Biological Soft Tissue,” ASME Journal of Applied Mechanics, 66, pp. 528–535.
Suh,  J-K., Spilker,  R. L., and Holmes,  M. H., 1991, “A Penalty Finite Element Analysis for Nonlinear Mechanics of Biphasic Hydrated Soft Tissue Under Large Deformation,” International Journal of Numerical Methods in Engineering,32, pp. 1411–1439.
Kwan,  M. K., Lai,  W. M., and Mow,  V. C., 1990, “A Finite Deformation Theory for Cartilage and Other Soft Hydrated Connective Tissues—I. Equilibrium Results,” J. Biomech., 23, No. 2, pp. 145–155.
Lai,  W. M., Mow,  V. C., and Roth,  V., 1981, “Effects of Nonlinear Strain Dependent Permeability and Rate of Compression on the Stress Behavior of Articular Cartilage,” ASME J. Biomech. Eng., 103, pp. 61–66.
Jurvelin,  J. S., Buschmann,  M. D., and Hunziker,  E. B., 1997, “Optical and Mechanical Determination of Poisson’s Ratio of Adult Bovine Humeral Articular Cartilage,” J. Biomech., 30, No. 3, pp. 235–241.
Mansour,  J. M., and Mow,  V. C., 1976, “The Permeability of Articular Cartilage Under Compressive Strain and at High Pressures,” J. Bone Jt. Surg., Am. Vol., 58-A, No. 4, pp. 509–516.
Mow,  V. C., Gibbs,  M. C., Lai,  W. M., Zhu,  W. B., and Athanasiou,  K. A., 1989, “Biphasic Indentation of Articular Cartilage—II. A Numerical Algorithm and an Experimental Study,” J. Biomech., 22, Nos. 8/9, pp. 853–861.
DiSilvestro, M. R., and Suh, J.-K. F., “A Cross-Validation of the Biphasic Poroviscoelastic Model of Articular Cartilage in Unconfined Compression, Indentation, and Confined Compression,” in print.

Figures

Grahic Jump Location
Average stress-strain relationship (n=5) for articular cartilage under unconfined compression. I-bars represent ± one standard deviation from the mean.
Grahic Jump Location
(a) Data set Specimen A (discrete points) along with linear BPVE model curve fits (solid lines); (b) Data set Specimen A (discrete points) along with linear BPE model curve fits (solid lines).

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In