Moore,
J. A., Steinman,
D. A., Prakash,
S., Johnston,
K. W., and Ethier,
C. R., 1999, “A Numerical Study of Blood Flow Patterns in Anatomically Realistic and Simplified End-to-Side Anastomoses,” J. Biomech. Eng., 121, pp. 265–272.

Taylor,
C. A., Hughes,
T. J. R., and Zarins,
C. K., 1998, “Finite Element Modeling of Blood Flow in Arteries,” Comput. Methods Appl. Mech. Eng., 158, pp. 155–196.

Hofer,
M., Rappitsch,
G., Perktold,
K., Trubel,
W., and Schima,
H., 1996, “Numerical Study of Wall Mechanics and Fluid Dynamics in End-to-Side Anastomoses and Correlation to Intimal Hyperplasia,” J. Biomech., 29, pp. 1297–1308.

Noori,
N., Scherer,
R., Perktold,
K., Czerny,
M., Karner,
G., Trubel,
M., Polterauer,
P., and Schima,
H., 1999, “Blood Flow in Distal End-to-Side Anastomoses With PTFE and a Venous Patch: Results of an In Vitro Flow Visualization Study,” Eur. J. Vasc. Endovasc Surg., 18, pp. 191–200.

Botnar,
R., Rappitsch,
G., Scheidegger,
M. B., Liepsch,
D., Perktold,
K., and Boesiger,
P., 2000, “Hemodynamics in the Carotid Artery Bifurcation: A Comparison Between Numerical Simulations and In Vitro MRI Measurements,” J. Biomech., 33, pp. 137–144.

Lei,
M., Kleinstreuer,
C., and Archie,
J. P., 1997, “Hemodynamic Simulations and Computer-Aided Designs of Graft-Artery Junctions,” J. Biomech. Eng., 119, pp. 343–348.

Long,
Q., Xu,
X. Y., Bourne,
M., and Griffith,
T. M., 2000, “Numerical Study of Blood Flow in an Anatomically Realistic Aorto-Iliac Bifurcation Generated From MRI Data,” Magn. Reson. Med., 43, pp. 565–576.

Zhao,
S. Z., Xu,
X. Y., Hughes,
A. D., Thom,
S. A., Stanton,
A. V., Ariff,
B., and Long,
Q., 2000, “Blood Flow and Vessel Mechanics in a Physiologically Realistic Model of a Human Carotid Arterial Bifurcation,” J. Biomech., 33, pp. 975–984.

Liu,
H., and Yamaguchi,
T., 1999, “Computer Modeling of Fluid Dynamics Related to a Myocardial Bridge in a Coronary Artery,” Biorheology, 36, pp. 373–390.

Shipkowitz,
T., Rodgers,
V. G., Frazin,
L. J., and Chandran,
K. B., 2000, “Numerical Study on the Effect of Secondary Flow in the Human Aorta on Local Shear Stresses in Abdominal Aortic Branches,” J. Biomech., 33, pp. 717–728.

Migliavacca,
F., Yates,
R., Pennati,
G., Dubini,
G., Fumero,
R., and de Leval,
M. R., 2000, “Calculating Blood Flow From Doppler Measurements in the Systemic-to-Pulmonary Artery Shunt After the Norwood Operation: A Method Based on Computational Fluid Dynamics,” Ultrasound Med. Biol., 26, pp. 209–219.

Freitas,
C. J., 1993, “Policy Statement on the Control of Numerical Accuracy,” ASME J. Fluids Eng., 115, pp. 339–340.

Roache, P. J., 1998, *Verification and Validation in Computational Science and Engineering*, Hermosa Publishers, Albuquerque, NM.

Steinman,
D. A., Frayne,
R., Zhang,
X. D., Rutt,
B. K., and Ethier,
C. R., 1996, “MR Measurement and Numerical Simulation of Steady Flow in an End-to-Side Anastomosis Model,” J. Biomech., 29, pp. 537–542.

Sun,
Y., Hearshen,
O. O., Rankin,
G. W., and Haggar,
A. M., 1992, “Comparison of Velocity-Encoded MR Imaging and Fluid Dynamic Modeling of Steady and Disturbed Flow,” J. Magn. Reson. Imaging, 2, pp. 443–452.

Ethier,
C. R., Prakash,
S., Steinman,
D. A., Leask,
R. L., Couch,
G. G., and Ojha,
M., 2000, “Steady Flow Separation Patterns in a 45 Degree Junction,” J. Fluid Mech., 411, pp. 1–38.

Fearn,
M., Mullin,
T., and Cliffe,
K. A., 1990, “Nonlinear Flow Phenomenon in a Symmetric Sudden Expansion,” J. Fluid Mech., 211, pp. 595–608.

Lei,
M., Kleinstreuer,
C., and Truskey,
G. A., 1995, “Numerical Investigation and Prediction of Atherogenic Sites in Branching Arteries,” J. Biomech. Eng., 117, pp. 350–357.

Lei,
M., Archie,
J. P., and Kleinstreuer,
C., 1997, “Computational Design of a Bypass Graft That Minimizes Wall Shear Stress Gradients in the Region of the Distal Anastomosis,” J. Vasc. Surg., 25, pp. 637–646.

Moore,
J. A., Rutt,
B. K., Karlik,
S. J., Yin,
K., and Ethier,
C. R., 1999, “Computational Blood Flow Modeling Based on In Vivo Measurements,” Ann. Biomed. Eng., 27, pp. 627–640.

Myers, J. G., Moore, J. A., Ojha, M., Johnston, K. W., and Ethier, C. R., 2000, “Factors Influencing Blood Flow Patterns in the Human Right Coronary Artery,” submitted to Ann. Biomed. Eng.

Maday,
Y., Patera,
A. T., and Rønquist,
E. M., 1990, “An Operator-Integration-Factor Splitting Method for Time-Dependent Problems: Application to Incompressible Fluid Flow,” J. Sci. Comput., 5, pp. 263–292.

Minev,
P. D., and Ethier,
C. R., 1999, “A Characteristic/Finite Element Algorithm for the 3-D Navier–Stokes Equations Using Unstructured Grids,” Comput. Methods Appl. Mech. Eng., 178, pp. 39–50.

Ethier, C. R., Steinman, D. A., and Ojha, M., 1999, “Comparisons Between Computational Hemodynamics, Photochromic Dye Flow Visualization and MR Velocimetry, in: *The Haemodynamics of Internal Organs–Comparison of Computational Predictions With In Vivo and In Vitro Data*, X. Y. Xu and M. W. Collins, eds., Computational Mechanics Publications, Ashurst, UK.

Prakash, S., 1999, “Adaptive Mesh Refinement for Finite Element Flow Modeling in Complex Geometries,” Ph.D. thesis, Department of Mechanical and Industrial Engineering, University of Toronto.

Prakash, S., and Ethier, C. R., 2001, “Enhanced Error Estimator for Adaptive Finite Element Analysis of 3D Incompressible Flow,” in press, Comput. Methods Appl. Mech. Eng.

Ethier,
C. R., and Steinman,
D. A., 1994, “Exact Fully 3D Navier–Stokes Solutions for Benchmarking,” Int. J. Numer. Methods Fluids, 19, pp. 369–375.