0
TECHNICAL PAPERS

Pulsatile Flow in an End-to-Side Vascular Graft Model: Comparison of Computations With Experimental Data

[+] Author and Article Information
M. Lei

Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21205

D. P. Giddens

Department of Biomedical Engineering, Georgia Institute of Technology/Emory University School of Medicine, Atlanta, GA 30332

S. A. Jones

Department of Biomedical Engineering, Louisiana Tech University, Ruston, LA 71272

F. Loth

Department of Mechanical Engineering and Bioengineering, University of Illinois at Chicago, Chicago, IL 60607

H. Bassiouny

Department of Vascular Surgery, University of Chicago School of Medicine, Chicago, IL 60637

J Biomech Eng 123(1), 80-87 (Sep 29, 2000) (8 pages) doi:10.1115/1.1336145 History: Received January 27, 1999; Revised September 29, 2000
Copyright © 2001 by ASME
Your Session has timed out. Please sign back in to continue.

References

Archie,  J. P., 1994, “Femoropopliteal Bypass With Either Adequate Ipsilateral Reversed Saphenous Vein or Obligatory Polytetraflorethylene,” Ann. Vasc. Surg., 8, No. 5 pp. 475–484.
Callow, A. D., 1982, “Historical Overview of Experimental and Clinical Development of Vascular Grafts,” in Biologic and Synthetic Vascular Prostheses, J. C. Stanley et al., eds., Grune & Stratton, New York, pp. 11–26.
Debakey,  M. E., Lawrie,  G. M., and Glaeser,  D. H., 1985, “Patterns of Atherosclerosis and Their Surgical Significance,” Ann. Surg., 201, pp.115–131.
Taylor,  R. F., Loh,  A., McFarland,  R. J., Cox,  M., and Chester,  J. F., 1992, “Improved Techniques for PTFE Bypass Grafting: Long-Term Results Using Anastomotic Vein Patches,” Br. J. Surg., 79, pp. 348–354.
Chervu,  A., and Moore,  W. S., 1990, “An Overview of Intimal Hyperplasia,” Surgery, Gynecology, and Obstetrics, 171, pp. 433–447.
Clowes,  A. W., Gown,  A. M., Hanson,  S. R., Reidy,  M. A., 1985, “Mechanisms of Arterial Graft Failure: 1. Role of Cellular Proliferation in Early Healing of PTFE Prostheses,” Am. J. Pathol., 118, pp. 43–54.
Sottiurai,  V. S., Yao,  J. S. T., Batson,  R. C., Sue,  S. L., Jones,  R., and Nakamura,  Y. A., 1989, “Distal Anastomotic Intimal Hyperplasia: Histopathologic Character and Biogenesis,” Ann. Vasc. Surg., 3, No. 1, pp. 26–33.
Archie,  J. P., 1997, “Geometric Dimension Changes With Carotid Endarterectomy Reconstruction,” J. Vasc. Surg., 25, pp. 488–498.
Bassiouny,  H. S., White,  S., Glagov,  S., Choi,  E., Giddens,  D. P., and Zarins,  C. K., 1992, “Anastomotic Intimal Hyperplasia: Mechanical Injury or Flow Induced,” J. Vasc. Surg., 15, pp. 708–717.
Geary,  R. L., Kohler,  T. R., Vergel,  S., Kirkman,  T. R., and Clowes,  A. W., 1993, “Time Course of Flow-Induced Smooth Muscle Cell Proliferation and Intimal Thickening in Endothelialized Baboon Vascular Grafts,” Circ. Res., 74, pp. 14–23.
Painter,  T. A., 1991, “Myointimal Hyperplasia: Pathogenesis and Implications, 2. Animal Injury Models and Mechanical Factors,” Artif. Organs, 15, No. 2, pp. 103–118.
Crawshaw,  H. M., Quist,  W. C., Serrallach,  E., Valeri,  R., and Logerfo,  F. W., 1980, “Flow Disturbance at the Distal End-to-Side Anastomosis,” Arch. Surg., 115, pp. 1280–1284.
Hughes,  P. E., and How,  T. V., 1995, “Flow Structures at the Proximal Side-to-End Anastomosis: Influence of Geometry and Flow Division,” ASME J. Biomech. Eng., 117, pp. 224–236.
Staalsen,  N. H., Vlrich,  M., Winther,  J., Pederson,  E. M., How,  T., and Nygaard,  H., 1995, “The Anastomosis Angle Does Change the Flow Fields at Vascular End-to-Side Anastomoses in Vivo,” J. Vasc. Surg., 21, pp. 460–471.
Dobrin,  P. B., Littooy,  F. N., and Endean,  E. D., 1989, “Mechanical Factors Predisposing to Intimal Hyperplasia and Medial Thickening in Autogenous Vein Grafts,” Surgery, 105, No. 3, pp. 393–400.
White,  S. S., Zarins,  C. K., Giddens,  D. P., Bassiouny,  H., Loth,  F., Jones,  S. A., and Glagov,  S., 1993, “Hemodynamic Patterns in Two Models of End-to-Side Vascular Graft Anastomoses: Effects of Pulsatility, Flow Division, Reynolds Number, and Hood Length,” ASME J. Biomech. Eng., 115, pp. 104–111.
Ojha,  M., 1994, “Wall Shear Stress Temporal Gradient and Anastomotic Intimal Hyperplasia,” Circ. Res., 74, pp. 1227–1231.
Kleinstreuer,  C., Lei,  M., and Archie,  J. P., 1996, “Flow Input Waveform Effects on the Temporal and Spatial Wall Shear Stress Gradients in a New Femoral Graft-Artery Connector,” ASME J. Biomech. Eng., 118, pp. 506–510.
Lei, M., 1995, “Computational Fluid Dynamics Analyses and Optimal Design of Bifurcating Blood Vessels,” Ph.D. thesis, North Carolina State University, Raleigh, NC.
Lei,  M., Archie,  J. P., and Kleinstreuer,  C., 1997, “Computational Design of a Bypass Graft That Minimizes Wall Shear Stress Gradients in the Region of the Distal Anastomosis,” J. Vasc. Surg., 25, pp. 637–646.
Steinman,  D. A., Vinh,  B., Ethier,  C. R., Ojha,  M., Cobbold,  R. S. C., and Johnston,  K. W., 1993, “A Numerical Simulation of Flow in a Two-Dimensional End-to-Side Anastomosis Model,” ASME J. Biomech. Eng., 115, pp. 112–118.
Hofer,  M., Rappitsch,  G., Perktold,  K., Trubel,  W., and Schima,  H., 1996, “Numerical Study of Wall Mechanics and Fluid Dynamics in End-to-Side Anastomoses and Correlation to Intimal Hyperplasia,” J. Biomech., 29, No. 10, pp. 1297–1308.
Schwartz,  L. B., O’Donohoe,  M. K., Purut,  C. M., Mikat,  E. M., Hagen,  P. O., and McCann,  R. L., 1992, “Myointimal Thickening in Experimental Vein Grafts Is Dependent on Wall Tension,” J. Vasc. Surg., 15, No. 1, pp. 176–186.
Rittgers,  S. E.Bhambhani,  G. H., 1991, “Pulsatile Flow in a Modeled Bypass Graft Anastomosis Using Ultrasonic Doppler Color Flow Mapping,” Biomechanics Symposium, ASME AMD-Vol. 120, pp. 21–24.
Keynton,  R. S., Evancho,  M. M., Sims,  R. L., and Rittgers,  S. E., 1999, “The Effect of Graft Caliber Upon Wall Shear Within in Vivo Distal Vascular Anastomoses,” ASME J. Biomech. Eng., 121, pp. 79–88.
Ojha,  M., 1993, “Spatial and Temporal Variations of Wall Shear Stress Within an End-to-Side Arterial Anastomosis Model,” J. Biomech., 26, No. 12, pp. 1377–1388.
Rhee,  K., and Tarbell,  J. M., 1994, “A Study of the Wall Shear Rate Distribution Near the End-to-End Anastomosis of a Rigid Graft and a Compliant Artery,” J. Biomech., 27, No. 3, pp. 329–338.
Keynton,  R. S., Rittgers,  S. E., and Shu,  M. C. S., 1991, “The Effect of Angle and Flow Rate Upon Hemodynamics in Distal Vascular Graft Anastomoses: An in Vitro Model Study,” ASME J. Biomech. Eng., 113, pp. 458–463.
Loth,  F., Jones,  S. A., Giddens,  D. P., Bassiouny,  H. S., Zarins,  C. K., and Glagov,  S., 1997, “Measurements of Velocity and Wall Shear Stress in a PTFE Vascular Graft Model Under Steady Flow Conditions,” ASME J. Biomech. Eng., 119, pp. 187–194.
Perktold,  K.Tatzl,  H.Schima,  H., 1993, “Computer Simulation of Hemodynamic Effects in Distal Vascular Graft Anastomoses,” Advances in Bioengineering, ASME BED-Vol. 26, pp. 91–94.
Ethier,  C. R.Zhang,  X.Karpik,  S. R. Ojha,  M., 1993, “Numerical Simulation of Flow in a Model Three-Dimensional End-to-Side Anastomosis,” Advances in Bioengineering, ASME BED-Vol. 26, pp. 83–86.
Fei,  D. Y., Thomas,  J. D., and Rittgers,  S. E., 1994, “The Effect of Angle and Flow Rate Upon Hemodynamics in Distal Vascular Graft Anastomoses: A Numerical Model Study,” ASME J. Biomech. Eng., 116, pp. 331–336.
Lei,  M., Kleinstreuer,  C., and Archie,  J. P., 1996, “Geometric Design Improvements for Femoral Graft-Artery Junctions Mitigating Restenosis,” J. Biomech., 29, No. 12, pp. 1605–1614.
Loth, F., 1993, “Velocity and Wall Shear Measurements Inside a Vascular Graft Model Under Steady and Pulsatile Flow Conditions,” Ph.D. thesis, Georgia Institute of Technology, Georgia, GA.
Cuvelier, C., Segal, A., and Steenhoven, A. A. Van, 1986, Finite Element Methods and Navier-Stokes Equations, Reidel, Dordrecht, the Netherlands.
Lei, M., Jones, S. A., and Giddens, D. P., 2000, “Numerical Simulation of Pulsatile Flow in a Model Carotid Bifurcation—Part I: Comparison With LDA Measurements,” Int. J. Cardiovascular Medicine & Science, under review.
Ku,  D. N., Giddens,  D. P., Zarins,  C. K., and Glagov,  S., 1985, “Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation – Positive Correlation Between Plaque Location and Low and Oscillating Shear Stress,” Arteriosclerosis, 5, No. 3, pp. 293–302.
He,  X., and Ku,  D. N., 1996, “Pulsatile Flow in the Human Left Coronary Artery Bifurcation: Average Conditions,” ASME J. Biomech. Eng., 118, pp. 74–82.
Archie,  J. P., 1988, “Early Postoperative Femoral-Distal Bypass Graft Failure Due to Vascular Clamp Injury Induced Femoral Artery Thrombosis,” Am. J. Surg., 54, pp. 167–168.
Miwa,  H., Matsude,  T., Tami,  N., Kondo,  K., and Iida,  F., 1993, “An in Vitro Endothelialized Compliant Vascular Graft Minimizes Anastomotic Hyperplasia,” ASAIO J., 39, No. 3, pp. 501–505.
Keynton,  R. S.Evancho,  M. M.Sims,  R. L.Rodway,  N. V.Li,  Q.Mallugari,  N.Rittgers,  S. E., 1996, “Wall Shear Stress Gradient Measurements Within the Distal Anastomosis of Vascular Bypass Grafts: An in Vivo Model Study,” Advances in Bioengineering, BED-Vol. 33, pp. 469–470.
Loth,  F.Jones,  S. A.Giddens,  D. P.Brossollet,  L. J., 1994, “Accuracy of Wall Shear Stress Estimates From Laser-Doppler Anemometry Measurements Under Unsteady Flow Conditions,” Advances in Bioengineering, ASME BED-Vol. 28, pp. 307–308.

Figures

Grahic Jump Location
Geometric configuration of the distal anastomosis model. Here, POS=proximal outlet section; DOS=distal outlet section. The diameter of the artery is 3.5 mm in vivo and 31.5 mm in the scaled up experimental model. The graft-to-artery diameter ratio is 1.6.
Grahic Jump Location
Physiological flow waveforms at the graft inlet (Qg) and the proximal and distal artery outlets (Qp,Qd) (after 34)
Grahic Jump Location
X-component velocity profiles in the symmetry plane in comparison with the LDA data of Loth 34 at four representative time steps: (a) flow acceleration phase (t1), (b) flow deceleration phase (t2), (c) reverse flow phase (t3), and (d) peak diastolic flow phase (t4)
Grahic Jump Location
Path of stagnation point movement along the arterial floor. Experimental data are from Loth 34.
Grahic Jump Location
Wall shear stress variations at selected points in comparison with the experimental data of Loth 34: (a) inlet region, (b) hood region, and (c) toe region
Grahic Jump Location
Distribution patterns of: (a) mean wall shear stress (w|), (b) spatial wall shear stress gradient (|SWSSG|), (c) temporal wall shear stress gradient (|TWSSG|), and (d) oscillating shear index (OSI) on the three-dimensional surface at the anastomotic site

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In