0
TECHNICAL PAPERS

Modeling of the Deformation of Flexible Tubes Using a Single Law: Application to Veins of the Lower Limb in Man

[+] Author and Article Information
S. Bassez

Centre de Recherche INNOTHERA, 10 av. Paul Vaillant Couturier, 94111 Arcueil, France

P. Flaud

LBHP URA 343 CNRS Case 7056, Université Paris VII, 2 Place Jussieu, 75005 Paris, France

M. Chauveau

Service d’exploration fonctionnelle, Ho⁁pital Cochin 27, Rue du faubourg Saint-Jacques, 75014 Paris, France

J Biomech Eng 123(1), 58-65 (Oct 16, 2000) (8 pages) doi:10.1115/1.1336143 History: Received April 16, 1998; Revised October 16, 2000
Copyright © 2001 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Grahic Jump Location
Comparison of pressure–area relation of a latex tube with the one of an excised segment of a canine vena cava 5
Grahic Jump Location
Experimental set-up used for determining the tube law
Grahic Jump Location
Details and dimensions of the in vitro model of surrounded vein
Grahic Jump Location
Experimental setup used for in vivo measurements of venous cross sectional area versus the posture
Grahic Jump Location
Pressure/area relationship of silastic tubes with different diameters: ‘+’ 20 mm, ‘O’ 5 mm
Grahic Jump Location
(a) Pressure/area relationships of tube No. 2 for various initial pre-stresses conditions; (b) normalized pressure/area relationship taking into account the longitudinal extension
Grahic Jump Location
Pressure/area relationship of tube No. 1 versus the gel elasticity E
Grahic Jump Location
Pressure/area relationship of tube No. 1 versus the gel surface/tube axis thickness e
Grahic Jump Location
(a) In vivo pressure/average area relationship for the saphenous, popliteal, and deep calf veins in man with ultrasonic images of popliteal and deep calf veins cross section at 30, 0, and −30 cmH2O; (b) cross-sectional area of the popliteal vein, in six subjects (▵ ▴ ○ • ⋄ ♦), versus the estimated Pi−e pressure and some results of data fit with the model (–); (c) cross-sectional area of the deep calf veins, in seven (▴ □ ♦ + −  *  •) subjects, versus the estimated Pi−e pressure and some results of data fit with the model (–).
Grahic Jump Location
Comparison between experimental tube law of tube No. 1 without (+) or with (▵ ○  * ) surrounding gel (symbols), and the model (solid lines)

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In