0
TECHNICAL PAPERS

Effects of Stress Shielding on the Transverse Mechanical Properties of Rabbit Patellar Tendons

[+] Author and Article Information
Ei Yamamoto

Laboratory on Mechanical Behavior of Materials, Department of Mechanical Engineering, School of Biology-Oriented Science and Technology, Kinki University, Naga, Wakayama 649-6493, Japan

Kozaburo Hayashi

Biomechanics Laboratory, Division of Mechanical Science, Department of Systems and Human Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan

Noritaka Yamamoto

Biomechanics Laboratory, Department of Mechanical Engineering, Faculty of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan

J Biomech Eng 122(6), 608-614 (Jun 29, 2000) (7 pages) doi:10.1115/1.1319660 History: Received May 25, 1999; Revised June 29, 2000
Copyright © 2000 by ASME
Your Session has timed out. Please sign back in to continue.

References

Noyes,  F. R., 1977, “Functional Properties of Knee Ligaments and Alterations Induced by Immobilization. A Correlative Biomechanical and Histological Study in Primates,” Clin. Orthop., 123, pp. 210–242.
Woo,  S. L.-Y., Gomez,  M. A., Sites,  T. J., Newton,  P. O., Orlando,  C. A., and Akeson,  W. H., 1987, “The Biomechanical and Morphological Changes in the Medial Collateral Ligament of the Rabbit After Immobilization and Remobilization,” J. Bone Joint Surg. Am., 69A, pp. 1200–1211.
Newton,  P. O., Woo,  S. L.-Y., MacKenna,  D. A., and Akeson,  W. H., 1995, “Immobilization of the Knee Joint Alters the Mechanical and Ultrastructural Properties of the Rabbit Anterior Cruciate Ligament,” J. Orthop. Res., 13, pp. 191–200.
Larsen,  N. P., Forwood,  M. R., and Parker,  A. W., 1987, “Immobilization and Retraining of Cruciate Ligaments in the Rat,” Acta Orthop. Scand., 58, pp. 260–264.
Cabaud,  H. E., Chatty,  A., Gildengorin,  V., and Feltman,  R. J., 1980, “Exercise Effects on the Strength of the Rat Anterior Cruciate Ligament,” Am. J. Sports Med., 8, pp. 79–86.
Woo,  S. L.-Y., Gomez,  M. A., Amiel,  D., Ritter,  M. A., Gelberman,  R. H., and Akeson,  W. H., 1981, “The Effects of Exercise on the Biomechanical and Biochemical Properties of Swine Digital Flexor Tendons,” ASME J. Biomech. Eng., 103, pp. 51–56.
Wang, C. W., Weiss, J. A., Albright, J. P., Buckwalter, J. A., and Woo, S. L.-Y., 1989, “The Effects of Long Term Exercise on the Structural and Mechanical Properties of the Canine Medial Collateral Ligament,” 1989 Biomechanics Symposium, ASME AMD-Vol. 98, pp. 69–72.
Rogers,  G. J., Milthorpe,  B. K., Schindhelm,  K., Howlett,  C. R., and Roe,  S., 1995, “Shielding of Augmented Tendon-Tendon Repair,” Biomaterials, 16, pp. 803–807.
Atkinson,  T. S., Atkinson,  P. J., Mendenhall,  H. V., and Haut,  R. C., 1998, “Patellar Tendon and Infrapatellar Fat Pad Healing After Harvest of an ACL Graft,” J. Surg. Res., 79, pp. 25–30.
Kennedy,  J. C., Roth,  J. H., Mendenhall,  H. V., and Sanford,  J. B., 1980, “Intraarticular Replacement in the Anterior Cruciate Ligament-Deficient Knee,” Am. J. Sports Med., 8, pp. 1–8.
Jackson,  W. D., Grood,  E. S., Arnoczky,  S. P., Butler,  D. L., and Simon,  T. M., 1987, “Cruciate Reconstruction Using Freeze Dried Anterior Cruciate Ligament Allograft and a Ligament Augmentation Device (LAD),” Am. J. Sports Med., 15, pp. 528–538.
McCarthy,  J. A., Steadman,  J. R., Dunlap,  J., Shively,  R., and Stonebrook,  S., 1990, “A Nonparallel Nonisometric Synthetic Graft Augmentation of a Patellar Tendon Anterior Cruciate Ligament Reconstruction,” Am. J. Sports Med., 18, pp. 43–49.
Yasuda,  K., Tsujino,  J., Tanabe,  Y., and Kaneda,  K., 1997, “Effects of Initial Graft Tension on Clinical Outcome After Anterior Cruciate Ligament Reconstruction,” Am. J. Sports Med., 25, pp. 99–106.
Yamamoto,  N., Ohno,  K., Hayashi,  K., Kuriyama,  H., Yasuda,  K., and Kaneda,  K., 1993, “Effects of Stress Shielding on the Mechanical Properties of Rabbit Patellar Tendon,” ASME J. Biomech. Eng., 115, pp. 23–28.
Yamamoto,  N., Hayashi,  K., Kuriyama,  H., Ohno,  K., Yasuda,  K., and Kaneda,  K., 1996, “Effects of Restressing on the Mechanical Properties of Stress-Shielded Patellar Tendons in Rabbits,” ASME J. Biomech. Eng., 118, pp. 216–220.
Hayashi,  K., 1996, “Biomechanical Studies of the Remodeling of Knee Joint Tendons and Ligaments,” J. Biomech., 29, pp. 707–716.
Hayashi, K., Yamamoto, N., and Yasuda, K., 1996, “Response of Knee Joint Tendons and Ligaments to Mechanical Stress,” Biomechanics—Functional Adaptation and Remodeling, Hayashi, K., Kamiya, A., and Ono, K., eds., Springer-Verlag, Tokyo, pp. 185–212.
Yamamoto,  N., Hayashi,  K., Hayashi,  F., Yasuda,  K., and Kaneda,  K., 1999, “Biomechanical Studies of the Rabbit Patellar Tendon After Removal of Its One-Fourth or a Half,” ASME J. Biomech. Eng., 121, pp. 323–329.
Atkinson,  P. J., Oyen-Tiesma,  M., Zukosky,  D. K., DeCamp,  C. E., Mackenzie,  C. D., and Haut,  R. C., 1999, “Patellar Tendon Augmentation After Removal of Its Central Third Limits Joint Tissue Changes,” J. Orthop. Res., 17, pp. 28–36.
Yamamoto,  E., Hayashi,  K., and Yamamoto,  N., 1999, “Mechanical Properties of Collagen Fascicles From Stress-Shielded Patellar Tendons in the Rabbit,” Clin. Biomech., 14, pp. 418–425.
Quapp,  K. M., and Weiss,  J. A., 1998, “Material Characterization of Human Medial Collateral Ligament,” ASME J. Biomech. Eng., 120, pp. 757–763.
Yamamoto,  E., Hayashi,  K., and Yamamoto,  N., 1999, “Mechanical Properties of Collagen Fascicles From the Rabbit Patellar Tendon,” ASME J. Biomech. Eng., 121, pp. 124–131.
Woo,  S. L.-Y., Newton,  P. O., MacKenna,  D. A., and Lyon,  R. M., 1992, “A Comparative Evaluation of the Mechanical Properties of the Rabbit Medial Collateral and Anterior Cruciate Ligaments,” J. Biomech., 25, pp. 377–386.
Yamamoto,  N., Hayashi,  K., Kuriyama,  H., Ohno,  K., Yasuda,  K., and Kaneda,  K., 1992, “Mechanical Properties of the Rabbit Patellar Tendon,” ASME J. Biomech. Eng., 114, pp. 332–337.
Harner,  C. D., Xerogeanes,  J. W., Livesay,  G. A., Carlin,  G. J., Smith,  B. A., Kusayama,  T., Kashiwaguchi,  S., and Woo,  S. L.-Y., 1995, “The Human Posterior Cruciate Ligament Complex: An Interdisciplinary Study,” Am. J. Sports Med., 23, pp. 736–745.
Butler,  D. L., Guan,  Y., Kay,  M. D., Cummings,  J. F., Feder,  S. M., and Levy,  M. S., 1992, “Location-Dependent Variations in the Material Properties of the Anterior Cruciate Ligament,” J. Biomech., 25, pp. 511–518.
Race,  A., and Amis,  A. A., 1994, “The Mechanical Properties of the Two Bundles of the Human Posterior Cruciate Ligament,” J. Biomech., 27, pp. 13–24.
Frank, C., and Shrive, N. G., 1994, “Ligament,” Biomechanics of the Musculo-Skeletal System, Nigg, B. M., and Herzog, W., eds., Wiley, Chichester, pp. 106–130.
Jones,  R. S., Nawana,  N. S., Pearcy,  M. J., Learmonth,  D. J. A., Bickerstaff,  D. R., Costi,  J. J., and Paterson,  R. S., 1995, “Mechanical Properties of the Human Anterior Cruciate Ligament,” Clin. Biomech., 10, pp. 339–344.
Woo,  S. L.-Y., Gomez,  M. A., Seguchi,  Y., Endo,  C. M., and Akeson,  W. H., 1983, “Measurement of Mechanical Properties of Ligament Substance From a Bone-Ligament-Bone Preparation,” J. Orthop. Res., 1, pp. 22–29.
Blankevoort,  L., and Huiskes,  R., 1996, “A Mechanism for Rotation Restraints in the Knee Joint,” J. Orthop. Res., 24, pp. 676–679.
Amiel,  D., Frank,  C., Harwood,  F. L., Fronek,  J., and Akeson,  W. H., 1984, “Tendons and Ligaments: A Morphological and Biochemical Comparison,” J. Orthop. Res., 1, pp. 257–265.
Kwan,  M. K., Lin,  T. H.-C., and Woo,  S. L.-Y., 1993, “On the Viscoelastic Properties of the Anteromedial Bundle of the Anterior Cruciate Ligament,” J. Biomech., 26, pp. 447–452.
Johnson,  G. A., Tramaglini,  D. M., Levine,  R. E., Ohno,  K., Choi,  N.-Y., and Woo,  S. L.-Y., 1994, “Tensile and Viscoelastic Properties of Human Patellar Tendon,” J. Orthop. Res., 12, pp. 796–803.

Figures

Grahic Jump Location
Method for stress shielding 14
Grahic Jump Location
Preparation of a transverse specimen for mechanical testing
Grahic Jump Location
A typical stress–strain curve of a control specimen. Numbers in the figure correspond to the pictures shown in Fig. 4.
Grahic Jump Location
Photographs of the specimen at the points of the stress–strain curve shown in Fig. 3. Bars indicate length of 5 mm.
Grahic Jump Location
Tensile strength of the specimens obtained from three locations. One-way ANOVA indicated no significant differences among the locations either in the control, in the 3 day stress-shielded, or in the 1 week stress-shielded tendons.
Grahic Jump Location
Stress–strain curves of the control and the stress-shielded patellar tendons in the transverse direction (averaged for all locations)
Grahic Jump Location
Tensile properties of the control and the stress-shielded patellar tendons in the transverse direction (averaged for all locations)
Grahic Jump Location
Relaxation curves of the control and the stress-shielded patellar tendons in the transverse direction. Initial strains were 14.6±2.9, 14.0±3.3, and 14.6±2.2 percent for the control, 3 day stress-shielded, and 1 week stress-shielded patellar tendons, respectively.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In