0
TECHNICAL BRIEFS

An Evaluation of Pseudoelastic Descriptors Used in Arterial Mechanics

[+] Author and Article Information
J. D. Humphrey

Biomedical Engineering Program, Texas A&M University, College Station TX 77843-3120

J Biomech Eng 121(2), 259-262 (Apr 01, 1999) (4 pages) doi:10.1115/1.2835113 History: Received May 28, 1998; Revised November 02, 1998; Online January 23, 2008

Abstract

Understanding how transmural distributions of stress relate to the mechanisms of vascular growth, remodeling, and disease necessitates computations that are based on a constitutive relation for the arterial wall. Although a number of candidate relations are in the literature, they have not been compared in detail. In this note, three commonly used descriptors of the passive behavior of common carotid arteries are compared using simple “thought experiments.” It is shown that two of the three relations are inherently limited in the degree of anisotropy they allow, that each predicts a different anisotropy, and that one yields physically unrealistic predictions given many of the published values of the material parameters. Based on this comparison, it appears that the relation proposed by Chuong and Fung is the best available, though there may be a need to search for an alternate form, particularly for muscular arteries. The methods presented herein are offered as a guide to help the experimentalist identify alternate forms of pseudostrain-energy functions for arteries.

Copyright © 1999 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In