Contoured Elastic-Membrane Microvalves for Microfluidic Network Integration

[+] Author and Article Information
A. M. Young, T. M. Bloomstein, S. T. Palmacci

Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA 02420-9108

J Biomech Eng 121(1), 2-6 (Feb 01, 1999) (5 pages) doi:10.1115/1.2798039 History: Received May 28, 1998; Revised October 01, 1998; Online October 30, 2007


A contoured elastic-membrane microvalve is presented that enables integrated microfluidic processing at the network level. This method takes advantage of two ideas to improve performance: flexible elastic membranes (which enable high-performance shutoff and reduced footprint), and three-dimensionally contoured valve geometries (which reduce dead volume, improve fluidic priming, and reduce susceptibility to cavitation at high fluid velocities). We describe the use of laser-induced etching for microfluidic manifold fabrication, discuss the nonlinear load-deflection behavior of elastic membranes that can occur below 30 psi, and present flow-rate data for microvalves under inlet pressures of 0–20 psi with zero applied membrane pressure. Valve-closure data for inlet pressures of 0–30 psi are presented for fully assembled microvalve structures. The microvalve structures under test were capable of turning off flows of>20 μL/s. These flow rates were shown to be limited by inlet and outlet flow resistances and not by the valve structure itself, so that higher maximum flow rate capabilities should be readily achieved.

Copyright © 1999 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In