Local Mechanical Anisotropy in Human Cranial Dura Mater Allografts

[+] Author and Article Information
M. S. Sacks, M. C. Jimenez Hamann, S. E. Otañno-Lata

Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33124-0621

T. I. Malinin

Department of Orthopædics and Rehabilitation, University of Miami, Coral Gables, FL 33124-0621

J Biomech Eng 120(4), 541-544 (Aug 01, 1998) (4 pages) doi:10.1115/1.2798027 History: Received November 15, 1996; Revised February 25, 1998; Online October 30, 2007


Human cranial dura mater (CDM) allograft’s success as a repair biomaterial is partly due to its high mechanical strength, which facilitates its ability to form water-tight barriers and resist high in-vivo mechanical loads. Previous studies on CDM allograft mechanical behavior used large test specimens and concluded that the allograft was mechanically isotropic. However, we have quantified CDM microstructure using small angle light scattering (SALS) and found regions of well-aligned fibers displaying structural symmetry between the right and left halves (Jimenez et al., 1998). The high degree of fiber alignment in these regions suggests that they are mechanically anisotropic. However, identification of these regions using SALS requires irreversible tissue dehydration, which may affect mechanical properties. Instead, we utilized CDM structural symmetry to estimate the fiber architecture of one half of the CDM using computer graphics to flip the SALS fiber architecture map of the corresponding half about the plane of symmetry. Test specimens (20 mm × 4 mm) were selected parallel and perpendicular to the preferred fiber directions and subjected to uniaxial mechanical failure testing. CDM allografts were found to be locally anisotropic, having an ultimate tensile strength (UTS) parallel to the fibers of 12.76 ± 1.65 MPa, and perpendicular to the fibers of 5.21 ± 1.01 MPa (mean ± sem). These results indicate that uniaxial mechanical tests on large samples used in previous studies tended to mask the local anisotropic nature of the smaller constituent sections. The testing methods established in this study can be used in the evaluation of new CDM processing methods and post-implant allograft mechanical integrity.

Copyright © 1998 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In