Performance Analysis of a Cardiac Assist Device in Counterpulsation

[+] Author and Article Information
N. C. Chesler, R. D. Kamm

Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139

J Biomech Eng 120(4), 437-445 (Aug 01, 1998) (9 pages) doi:10.1115/1.2798012 History: Received May 14, 1997; Revised January 20, 1998; Online October 30, 2007


Performance of a cardiac assist device pumping chamber in counterpulsation was evaluated using numerical simulations of the unsteady, three-dimensional flow inside the chamber and an analytical model of the force required to eject and fill the chamber. The wall shear stress within the device was similarly computed and modeled. The analytical model was scaled to match the numerical results and then used to predict performance at physiological operating conditions. According to these models for a stroke volume of 70 ml, between 0.4 and 1.0 W is required for counterpulsation at a frequency of 1.33 Hz against a restorative spring, depending on the spring constant chosen. The power and the maximum force calculated are within the ranges a trained skeletal muscle is capable of providing. Shear stress predictions show that platelet activation in the absence of surface effects and hemolysis due to high shear are unlikely to occur with this design. Furthermore, vortices that develop in the chamber during filling are predicted to increase blood mixing and provide favorable washing of the chamber walls. A computational-analytical approach such as this may have potential to aid rapid performance evaluation of new devices and streamline the design optimization process.

Copyright © 1998 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In