0
TECHNICAL PAPERS

Investigation Into the Biphasic Properties of a Hydrogel for Use in a Cushion Form Replacement Joint

[+] Author and Article Information
A. A. J. Goldsmith, S. E. Clift

School of Mechanical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom

J Biomech Eng 120(3), 362-369 (Jun 01, 1998) (8 pages) doi:10.1115/1.2798003 History: Received May 08, 1996; Revised August 27, 1997; Online October 30, 2007

Abstract

A hydrogel with potential applications in the role of a cushion form replacement joint bearing surface material has been investigated. The material properties are required for further development and design studies and have not previously been quantified. Creep indentation experiments were therefore performed on samples of the hydrogel. The biphasic model developed by Mow and co-workers (Mak et al., 1987; Mow et al., 1989a) was used to curve-fit the experimental data to theoretical solutions in order to extract the three intrinsic biphasic material properties of the hydrogel (aggregate modulus, HA , Poisson’s ratio, νs , and permeability, k). Ranges of material properties were determined: aggregate modulus was calculated to be between 18.4 and 27.5 MPa, Poisson’s ratio 0.0–0.307, and permeability 0.012–7.27 × 10−17 m4 /Ns. The hydrogel thus had a higher aggregate modulus than values published for natural normal articular cartilage, the Poisson’s ratios were similar to articular cartilage, and finally the hydrogel was found to be less permeable than articular cartilage. The determination of these values will facilitate further numerical analysis of the stress distribution in a cushion form replacement joint.

Copyright © 1998 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In