0
RESEARCH PAPERS

Modeling of Facet Articulation as a Nonlinear Moving Contact Problem: Sensitivity Study on Lumbar Facet Response

[+] Author and Article Information
M. Sharma, N. A. Langrana

Department of Mechanical and Aerospace Engineering, Rutgers, the State University of New Jersey, New Brunswick, NJ 08903

J. Rodriguez

Western Michigan University, Kalamazoo, MI 49008

J Biomech Eng 120(1), 118-125 (Feb 01, 1998) (8 pages) doi:10.1115/1.2834291 History: Received November 18, 1995; Revised February 10, 1997; Online January 07, 2008

Abstract

A finite element (FE) based scheme for modeling facet articulation in a spinal motion segment is proposed. The algorithm presented models the facet articulation as a nonlinear progressive contact problem. This algorithm is used to perform a nonlinear FE analysis of a complete L3-L4 motion segment. The role of facets in load transmission through a motion segment and its sensitivity to facet geometric parameters (i.e., spatial orientation of the facets and the gap between the facet articular surfaces) on this load transmission are studied. Compression, flexion, extension, and torsion loads are used in this study. The effect of facetectomy on gross segment response and disk fiber strains is studied by comparing the response of FE models of motion segment with and without facets. Large facet loads are obtained when the motion segment is subjected to torsional and large extension rotations, whereas minimal facet loads are observed under compression and flexion loading. Removal of facets reduces the segment stiffness considerably in torsion and results in higher strain levels in disk fibers. The facet load transmission is sensitive to facet geometric parameters, i.e., spatial orientation and initial facet joint gap. The facet loads increase uniformly with decrease in initial gap between the facet articular surfaces under compression, extension, and torsional loads. The sensitivity to spatial orientation angles of the facet is, however, found to vary with the type of loading. This sensitivity may account for the wide variation in the facet response reported in literature.

Copyright © 1998 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In