0
TECHNICAL PAPERS

Optimal Seat Suspension Design Based on Minimum “Simulated Subjective Response”

[+] Author and Article Information
Y. Wan, J. M. Schimmels

Department of Mechanical and Industrial Engineering, Marquette University, Milwaukee, WI 53201-1881

J Biomech Eng 119(4), 409-416 (Nov 01, 1997) (8 pages) doi:10.1115/1.2798287 History: Received September 15, 1995; Revised November 12, 1996; Online October 30, 2007

Abstract

This work addresses a method for improving vertical whole body vibration isolation through optimal seat suspension design. The primary thrusts of this investigation are: (1) the development of a simple model that captures the essential dynamics of a seated human exposed to vertical vibration, (2) the selection and evaluation of several standards for assessing human sensitivity to vertical vibration, and (3) the determination of the seat suspension parameters that minimize these standards to yield optimal vibration isolation. Results show that the optimal seat and cushion damping coefficients depend very much on the selection of the vibration sensitivity standard and on the lower bound of the stiffnesses used in the constrained optimization procedure. In all cases, however, the optimal seat damping obtained here is significantly larger (by than a factor of 10) than that obtained using existing seat suspension design methods or from previous optimal suspension studies. This research also indicates that the existing means of assessing vibration in suspension design (ISO 7096) requires modification.

Copyright © 1997 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In