A Structurally Based Stress-Stretch Relationship for Tendon and Ligament

[+] Author and Article Information
C. Hurschler, R. Vanderby

Division of Orthopedic Surgery and Department of Engineering Mechanics, University of Wisconsin—Madison, Madison, WI 53792-3228

B. Loitz-Ramage

Department of Kinesiology, University of Wisconsin—Madison, Madison, WI 53792-3228

J Biomech Eng 119(4), 392-399 (Nov 01, 1997) (8 pages) doi:10.1115/1.2798284 History: Received March 13, 1996; Revised December 21, 1996; Online October 30, 2007


We propose a mechanical model for tendon or ligament stress–stretch behavior that includes both microstructural and tissue level aspects of the structural hierarchy in its formulation. At the microstructural scale, a constitutive law for collagen fibers is derived based on a strain-energy formulation. The three-dimensional orientation and deformation of the collagen fibrils that aggregate to form fibers are taken into consideration. Fibril orientation is represented by a probability distribution function that is axisymmetric with respect to the fiber. Fiber deformation is assumed to be incompressible and axisymmetric. The matrix is assumed to contribute to stress only through a constant hydrostatic pressure term. At the tissue level, an average stress versus stretch relation is computed by assuming a statistical distribution for fiber straightening during tissue loading. Fiber straightening stretch is assumed to be distributed according to a Weibull probability distribution function. The resulting comprehensive stress–stretch law includes seven parameters, which represent structural and microstructural organization, fibril elasticity, as well as a failure criterion. The failure criterion is stretch based. It is applied at the fibril level for disorganized tissues but can be applied more simply at a fiber level for well-organized tissues with effectively parallel fibrils. The influence of these seven parameters on tissue stress–stretch response is discussed and a simplified form of the model is shown to characterize the nonlinear experimentally determined response of healing medial collateral ligaments. In addition, microstructural fibril organizational data (Frank et al., 1991, 1992) are used to demonstrate how fibril organization affects material stiffness according to the formulation. A simplified form, assuming a linearly elastic fiber stress versus stretch relationship, is shown to be useful for quantifying experimentally determined nonlinear toe-in and failure behavior of tendons and ligaments. We believe this ligament and tendon stress–stretch law can be useful in the elucidation of the complex relationships between collagen structure, fibril elasticity, and mechanical response.

Copyright © 1997 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In