A Finite Element Solution for the Anisotropic Biphasic Theory of Tissue-Equivalent Mechanics: The Effect of Contact Guidance on Isometric Cell Traction Measurement

[+] Author and Article Information
V. H. Barocas, R. T. Tranquillo

Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455

J Biomech Eng 119(3), 261-268 (Aug 01, 1997) (8 pages) doi:10.1115/1.2796090 History: Received November 18, 1995; Revised August 26, 1996; Online October 30, 2007


We present a method for solving the governing equations from our anisotropic biphasic theory of tissue-equivalent mechanics (Barocas and Tranquillo, 1997) for axisymmetric problems. A mixed finite element method is used for discretization of the spatial derivatives, and the DASPK subroutine (Brown et al., 1994) is used to solve the resulting differential-algebraic equation system. The preconditioned GMRES algorithm, using a preconditioner based on an extension of Dembo’s (1994) adaptation of the Uzawa algorithm for viscous flows, provides an efficient and scaleable solution method, with the finite element method discretization being first-order accurate in space. In the cylindrical isometric cell traction assay, the chosen test problem, a cylindrical tissue equivalent is adherent at either end to fixed circular platens. As the cells exert traction on the collagen fibrils, the force required to maintain constant sample length, or load, is measured. However, radial compaction occurs during the course of the assay, so that the cell and network concentrations increase and collagen fibrils become aligned along the axis of the cylinder, leading to cell alignment along the axis. Our simulations predict that cell contact guidance leads to an increase in the load measured in the assay, but this effect is diminished by the tendency of contact guidance to inhibit radial compaction of the sample, which in turn reduces concentrations and hence the measured load.

Copyright © 1997 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In