0
TECHNICAL PAPERS

Finite Element Model of the Human Lower Cervical Spine: Parametric Analysis of the C4-C6 Unit

[+] Author and Article Information
N. Yoganandan, S. Kumaresan, L. Voo, F. A. Pintar

Department of Neurosurgery, Medical College of Wisconsin; Department of Veterans Affairs, Medical Center, Milwaukee, WI 53226

J Biomech Eng 119(1), 87-92 (Feb 01, 1997) (6 pages) doi:10.1115/1.2796070 History: Received June 19, 1995; Revised March 13, 1996; Online October 30, 2007

Abstract

In this study, a three-dimensional finite element model of the human lower cervical spine (C4-C6) was constructed. The mathematical model was based on close-up CT scans from a young human cadaver. Cortical shell, cancellous core, endplates, and posterior elements including the lateral masses, pedicle, lamina, and transverse and spinous processes, and the intervertebral disks, were simulated. Using the material properties from literature, the 10,371-element model was exercised under an axial compressive mode of loading. The finite element model response agreed with literature. As a logical step, a parametric study was conducted by evaluating the biomechanical response secondary to changes in the elastic moduli of the intervertebral disk and the endplates. In the stress analysis, the minimum principal compressive stress was used for the cancellous core of the vertebral body and von Mises stress was used for the endplate component. The model output indicated that an increase in the elastic modulii of the disk resulted in an increase in the endplate stresses at all the three spinal levels. In addition, the inferior endplate of the middle vertebral body responded with the highest mean compressive stress followed by its superior counterpart. Furthermore, the middle vertebral body produced the highest compressive stresses compared to its counterparts. These findings appear to correlate with experimental results as well as common clinical experience wherein cervical fractures are induced due to external compressive forces. As a first step, this model will lead to more advanced simulations as additional data become available.

Copyright © 1997 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In